

WAISWES INVALLY

Cam Bolt Locking Plate

This lock plate and bolt kit prevents the damage that loose cam bolts can cause.

Part Number	Description
90283	Chevrolet V-8 1955-87

Cam Thrust Buttons

Aluminum

Roller tappet cams don't have the taper ground lobes that flat tappet cams use to provide locating thrust. Lunati's thrust button should be used with all roller cams to prevent forward cam walk

Part Number	Description
90002	Chevrolet 283-400
90003	Chevrolet 396-454

Rollerized

Provides reduced friction at the cam nose

Part Number	Description
90001	Chevrolet 283-400
90000	Chevrolet 396-454
90004	Chrysler "B" Mopar

Cam Wear Plate

Used to adjust cam end play in worn blocks

Part Number	Description
90201	Chevrolet 283-400, .025" Thick
90203	Chevrolet 396-454, .025" Thick
90207	Chevrolet 283-400, rollerized .100" Thick
90208	Chevrolet 396-454, rollerized .100" Thick

Camshaft Assembly Lube

Lunati Camshaft Assembly Lube, packaged in 10-gram tubes, is a molydisulphide-based lubricant, which provides superior wear protection on initial start up. We supply this lube with each flat tappet camshaft for use on cam lobes and lifter faces.

on initial start up.	We supply this lube with each flat	8
nshaft for use on ca	nm lobes and lifter faces.	
Part Number	Description	
99010	10 Gram Tube	

172

www.lunaticamshafts.com

CAMSHAFT ACCESSORIES

Degree Bushing Kits

Used to advance or retard camshafts up to 8°.

Part Number	Description
81015	Chevrolet V-8 0°,2°,4°,6°,8° Bushings
81006	Ford V-8 0°,2°,4°,6°,8° Bushings & Special Dowel Pin

Degree Keys

Used to advance or retard Chevy cams up to 4 crankshaft degrees.

Part Number	Description
81003	Chevrolet Contains 2° and 4° Keys

Distributor Gears

Lunati distributor gears are manufactured from bronze alloy material (Ampco 45) to exacting tolerances for a perfect mesh with your cam gear.

Part Number	Description
88347	Chevrolet V8 HEI w/ .427" Shaft
88350	Chevrolet V8 & V6 w/ .491" Shaft (Stock Size)
88349	Chevrolet V8 w/ .500" Shaft
88250	Chevrolet L6 w/ .491" shaft
88348	MSD w/ .500" Shaft
88340	Chrysler "A" 273-360 ci
88426	Chrysler "B" & Hemi w/ .484" Shaft
88302	SVO 302/351W w/ .531" Shaft
88289	Ford 289-302 w/ .467" Shaft
88290	Ford 289-302 w/ .500" Shaft
88400	Ford 351C-400 & 332-428 w/ .500" Shaft
88351	Ford 351C-400 & 370-460 w/ .530" Shaft
88428	Ford FE 332-428 w/ .467" Shaft
88455	Oldsmobile V8 w/ .491" Shaft
88489	Pontiac V8 w/ .489" Shaft

CAMSHAFTS

AME TRA

PISTUNS

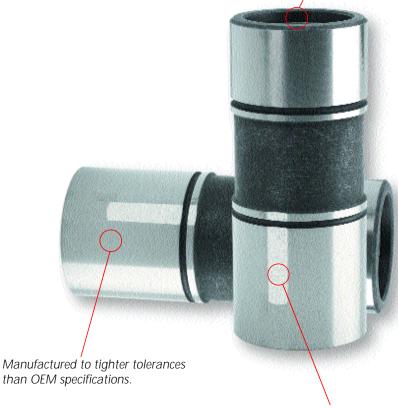
RODS

CRANKSHAFTS

BACKE KITS

173

Design Time: 1:000-465-5591/Tech Time: 901-855-0950



Replacement & Hi-Vac Hyd. Lifters

LIFTERS

Precise oil metering system that reduces excess oil to top of engine at high RPM.

Micro Lube Flat for up to 10cc extra oil to cam lobe and lifter face per minute.

174

www.lunaliteamshaffs.com

LIFTERS

Performance Replacement Hydraulic Lifters

Lunati's Performance replacement lifters are designed and manufactured to exacting tolerances. Performance replacement lifters are intended to be an exact replacement for your factory performance lifters.

Part Number	Description
71963PR	AMC V8 290-304-343-360-401 ci.
71817PR-12	Chevrolet V6 200-229-262 ci.
71817PR-12	Chevrolet L6 194-230-250-292 ci.
71817PR-12	Chevrolet V8 262-265-267-283-302-305-307-327-350-400-396-402-427-454 ci.
71977PR	Chrysler A 273-340-360 & '67 up 318 ci.
71977PR	Chrysler B 350-361-383-400-413-426-440 ci. '68 & up
71900PR	Ford V8 221-255-260-289-302-351C-351W-370-400-429-460 ci.
71951PR	Oldsmobile V8 '68 & up 260-307-350-400-403-425-455 ci.
71951PR	Pontiac V8 265-287-301-316-326-347-350-370-389-400-421-428-455 ci.

Hi-Vac Hydraulic Lifters (Fast Bleed)

Lunati's Hi-Vac Lifters are designed to bleed down faster than a normal lifter. At a lower RPM this increases engine vacuum. When RPM increases these lifters act like a conventional hydraulic lifter. Hi-Vac lifters are excellent when a vacuum rule is in place or extra vacuum is needed for accessories.

Part Number	Description
71817HV	Chevrolet V8 262-265-267-283-302-305-307-327-350-400-396-402-427-454 ci.
71900HV	Ford V8 221-255-260-289-302-351C-351W-370-400-429-460 ci.

CAMSHAFTS

ALVE TRAIL

PISTONS

RODS

CRANKSHAFTS

175

Dealer Cine: 1:800-455-5391/Tech Cine: 901-855-0950

VALVE LINAUN

Micro lube, Trol, Solid & "G" Series lifters

LIFTERS

"Micro" Lube Hydraulic Lifters

Lunati's new Micro lube hydraulic lifters are designed to add extra oil to the lobe of the camshaft and lifter face to help prevent premature lifter or lobe failure. Machined flat adds up to 10cc extra oil to the lobe per minute. The Micro lube lifter offers improved cam and lifter life without sacrificing oil pressure.

Part Number	Description
71817ML	Chevrolet V8 262-265-267-283-302-305-307-327-350-400-396-402-427-454 ci.
71900ML	Ford V8 221-255-260-289-302-351C-351W-370-400-429-460 ci.
71977ML	Chrysler A 273-340-360 & '67 up 318 ci.
71977ML	Chrysler B 350-361-383-400-413-426-440 ci. '68 & up

Micro-Trol Hydraulic Lifters

Lunati's Micro-Trol Lifters are designed for performance applications where precise oil control is an absolute necessity. The precise oil control allows higher rpm potential. To obtain maximum performance from this lifter, the plunger is held in place by a full contact snap ring, specially designed to be an integral part of the lifter assembly...unlike wire clip locking rings that come apart at high RPM, destroying the lifter.

Part Number	Description
71963-12	AMC 6 cyl. 199-232-244-258 ci.
71963	AMC V8 290-304-343-360-401 ci.
71969-12	Buick V6 181-196-231-252 ci.
71969	Buick V8 350-400-430-455 ci.
71217-12	Chevrolet V6 60° 173 ci.
71817-12	Chevrolet V6 200-229-262 ci.
71817-12	Chevrolet L6 194-230-250-292 ci.
71817	Chevrolet V8 262-265-267-283-302-305-307-327-350-400-396-402-427-454 ci.
71977	Chrysler A 273-340-360 & '67 up 318 ci.
71977	Chrysler B 350-361-383-400-413-426-440 ci. '68 & up
71900-12	Ford 6 cyl. 240-300 ci.
71900	Ford V8 221-255-260-289-302-351C-351W-370-400-429-460 ci.
71949	Ford V8 332-360-390-406-410-427-428 ci.
71951	Oldsmobile V8 '68 & up 260-307-350-400-403-425-455 ci.
71077-8	Pontiac 4 cyl. 151 ci. '79 & up
71969-8	Pontiac 4 cyl. 151 ci. '77-*78
71951	Pontiac V8 265-287-301-316-326-347-350-370-389-400-421-428-455 ci.

176

www.lunatteamshafts.com

LIFTERS

"G" Series Hydraulic Lifters

The G Series Hydraulic Lifter was designed for use in rac ing applications. To obtain maximum performance from this lifter, the plunger must be run at the extreme end of its travel. To keep the lifter from coming apart, the plunger is held in place by a full contact snap ring, specially designed to be an integral part of the lifter assembly, unlike wire clip locking rings that come apart at high RPM, destroying the lifter.

The G Series Lifter is built with the closest internal toler ances in the industry. This reduces bleed down and insures a more positive valve action than that found in more conventional hydraulic lifters.

CAMSHAFTS

PLIVE TRAP

PISTONS S

RODS

CRANKSHAFTS

BICALE KITS

Part Number	Description
71817G	Chevrolet, All Small and Big Block V-8
71900G	Ford 221-255-260-289-302-351C-351W-370-400-429-460
71977G	Chrysler A & B, 68 & up
71951G	Pontiac - Oldsmobile, All V-8

Solid Lifters

Lunati mechanical, (solid) lifters, are designed to meter the exact amount of oil while maintaining the precise lash needed to allow the camshaft to perform at its best.

Part Number	Description
70998	AMC - all
70992	Chevrolet & Pontiac - all
70992-12	Chevrolet V6 & L6 - all
70937	Chrysler - all
70000	Ford V8 221-255-260-289-302-351C-351W-370-400-429-460 ci.
70872	Ford V8 352-360-390-406-410-427-428 ci. FE
70903	Ford V8 352-360-390-406-410-427-428 ci. FE, Shell Type

177

Design Cine: 1:800-455-5391/Tech Cine: 901-865-0950

Hydraulic Roller Lifters & Retro-Fit Kit

LIFTERS

Hydraulic Roller Lifters

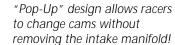
Lunati Hydraulic roller lifters are offered for the Small and Big Block Chevy's as a vertical bar drop in lifter for engines originally designed for use with a flat tappet lifter. Lunati's hydraulic roller lifter for the 302 HO Ford is a performance replacement that is also used in Lunati's hydraulic roller retrofit kit.

Part Number	Description
72817LUN	Chevrolet 283-400 hydraulic rollers- retro-fit
72820LUN	Chevrolet 396-454 hydraulic rollers - retro-fit
72915	Ford 302 HO 86-up hydraulic performance
	replacement and in the Lunati Hydraulic roller retrofit kit for 289-351W

Hydraulic Roller Retro-Fit Kit

Lunati Hydraulic roller retro-fit kit for Ford 289-351W engines include all the parts necessary to convert to hydraulic roller lifters. This kit is used on engines originally equipped with flat tappet cams.

(Kit Includes Lifters)


Part Number	Description
86140	Ford 289-351W hydraulic roller retro-fit kit

178

www.lineffermsheffs.com

LIFTERS

Available for small block

Material removed from noncritical areas for increased valve train stability and reduced weight - less than 100 grams per pair.

Components are made of the highest quality materials and precision ground to ensure maximum performance lap after lap.

CAMSHAFTS

RODS

CRANKSHAFTS

Design (Time: 14300-455-5591)/Tech (Time: 900-855-055

VAL

VALVL INAIIV

Pop-Up & Vertical Roller Lifters & Tech Info

LIFTERS

Pop Up Roller Lifters

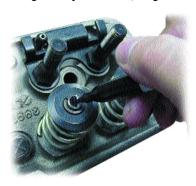
Lunati lightweight pop up design roller lifters are ideal for the racers that need to change camshafts quickly or for quick cam changes on the dyno. The spring loaded horizontal bar design allows you to remove the cam without removing the intake manifold! The light weight design also reduces valve train weight with a pair of 72840 only weighing in at 100 grams.

Part			Pushrod
Number	Description	Diameter	Seat Location
72840LUN	Chevrolet 283-400 Light weight pop up design, horizontal bar	.842"	All Centered
72992LUN	Chevrolet 396-454 Light weight pop up design, horizontal bar	.842"	All Centered

Vertical Bar Roller Lifters

Lunati vertical bar roller lifters are manufactured from premium materials and machined to exacting tolerances and heat-treat ed for maximum durability. Lunati's vertical bar lifters feature maximized lifter bore contact for less wear and material is removed from non-critical areas for a strong lightweight lifter. Lunati roller lifters are the #1 choice for racers and street machines alike.

Part			Pushrod
Number	Description	Diameter	Seat Location
72848LUN	Chevrolet 283-400 vertical bar design	.842"	All Centered
72740LUN	Chevrolet 283-400 offset for Buick cyl. head	.842"	(8) Left Intake (8) Left Exhaust
72745	Chevrolet 283-400 .875" dia. lifter bore	.875"	All Centered
72750LUN	Chevrolet 283-400 special .180" offset intake	.842"	(8) Centered (4)Left intake (4) Right Intake
72790LUN	Chevrolet 396-454 vertical bar design	.842"	All Centered
72792LUN	Chevrolet 396-454 .180" offset intake	.842"	(8) Centered (4)Left intake (4) Right Intake
72340LUN	Mopar 318-340-360 vertical bar design	.903"	All Centered
72942	B-Mopar and Hemi vertical bar design	.903"	All Centered
72914	Ford 260-400 Windsor & Cleveland vertical bar design	.875"	All Centered
72903	Ford 390-428 FE vertical bar design	.842"	All Centered
72000LUN	Ford 429-460 vertical bar design	.875"	All Centered
72951	Pontiac engines vertical bar design	.842"	All Centered
72515LUN	Oldsmobile 307-455 vertical bar design	.842"	All Centered


180

www.lunaticamshafts.com

HOW TO VERIFY PROPER VALVE TRAIN GEOMETRY

The following is a method of verifying proper valve train geometry. After you have estimated the required pushrod length using a Lunati Pushrod Length Checker, use this method to <u>verify</u> that the valve train geometry is correct (using the rockers you are using in your engine.)

The first step is to install a solid lifter and an adjustable pushrod. Mark the tip of the valve with a marker.

Install your rocker arm and set it up with zero lash.

Rotate the crankshaft clockwise several times. Remove the rocker arm. The contact pattern of the rocker tip will be where the marker has been wiped away from the valve tip. The pattern should be centered on the valve tip, and as narrow as possible. If it is not, experiment with varying the pushrod length to yield the best pattern.

Pushrod Too Long: Notice how the pattern is wide, and shifted to the exhaust side of the valve tip.

HANSHAFIS

ALVE TRAI

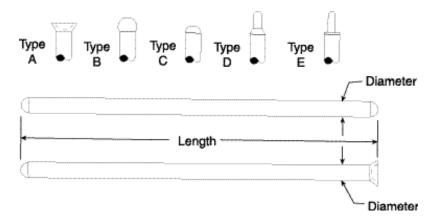
RODS

CRANKSHAFTS

Design Cine: 1:300-455-5391 / Tech Cine: 901-355-05-0

Technical Info & Bracket Master II Pushrods

HOW TO VERIFY PROPER VALVE TRAIN GEOMETRY



Pushrod Too Short: Notice how the pattern is wide, and shifted to the intake side of the valve tip.

Pushrod Length Correct: Notice how the pattern is narrow and is centered on the valve tip.

Pushrod End types

182

www.lunalieamshafts.com

BRACKET MASTER II PUSHRODS

Bracket Master II Pushrods

When building an engine, one of the most over looked areas is the pushrods and rocker arms. Similar to a lifter that develops a wear pattern to the camshaft, the pushrod develops a wear pattern in the pushrod seat. If you mismatch the balls and seats, premature failure will result. We recommend you replace pushrods and rocker arms when build ing your engine. The special heat treated balls welded to the ends of the Bracket Master II pushrods make them an ideal replacement piece for your worn stock pushrods.

CAMSHAFTS

WALVE TRAIN

Chevrolet

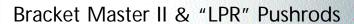
Part	Engine	Diameter	0verall	End	Use with
Number	Application		Length	Type	Guide Plates
80159	V8 262-400, w/OE Hydraulic Roller Cam, '87 up	5/16"	7.195"	B&B	Yes
80132	V8 262-400 w/Retro Fit Hydraulic Roller Cam	5/16"	7.290"	B&B	Yes
81134	V8 262-400, '55-present w/Flat Tappet, hardened	5/16"	7.794"	B&B	Yes
80135LUN	V8 262-400, '55-present, .100" long	5/16"	7.894"	B&B	Yes
80160I	V8 396-454 Intake w/Retro Fit Hydraulic Roller	3/8"	7.725"	B&B	Yes
80160X	V8 396-454 Exhaust w/Retro Fit Hydraulic Roller	3/8"	8.684"	B&B	Yes
80160	V8 396-454, contains 80160I & 80160X	3/8"	-	B&B	Yes
80144I	V8 396-454, Intake hardened replacement	3/8"	8.280"	B&B	Yes
80144X	V8 396-454, Exhaust hardened replacement	3/8"	9.252"	B&B	Yes
80144	V8 396-454, contains 80144I & 80144X	3/8"	-	B&B	Yes

PISTONS

RODS

Ford

. U. u					
Part	Engine	Diameter	0verall	End	Use with
Number	Application		Length	Type	Guide Plates
80760	V8 255-302, '65-present w/Flat Tappet	5/16"	6.876"	B&B	Yes
80761	V8 302 w/OE Hydraulic Roller Cam '85-present	5/16"	6.250"	B&B	Yes
80762	V8 255-302 .060" long, '68-'85	5/16"	6.936"	B&B	No
80745	V8 302 Retro Fit	5/16"	6.400"	B&B	Yes
80763	V8 351W, '69-'78	5/16"	8.152"	B&B	No
80765	V8 351W Retro Fit	5/16"	7.700"	B&B	Yes
80950	V8 351C & Cobra Jet, '70-'74	5/16"	8.408"	B&B	No
80766	V8 429-460, '72-'78	5/16"	8.550"	B&B	No
80767	V8 429-460 .060" long, '72-'78	5/16"	8.616"	B&B	No


CRANKSHAFTS

ENGINE KITS

183

Dealer Une: 1:800-455-5391/Tech Une: 901-855-0950

BRACKET MASTER II PUSHRODS - (CONTINUED)

Oldsmobile

Part	Engine	Diameter	0verall	End	Use with	
Number	Application		Length	Type	Guide Plates	
80801	V8 400-455, '71-'79	5/16"	9.750"	B&B	Yes	

Pontiac

Number	Engine Application	Diameter	Overall Length	End Type	Use with Guide Plates	
80726	V8 350-455, '55-'79	5/16"	9.136"	B&B	Yes	

Pushrod Length Checker

This tool is a must for the serious engine builder or performance enthusiast. Without a doubt, this tool simplifies the art of determining correct push rod length .

Part Number	Description
80120	Chevrolet 283-400
80121	Chevrolet 396-454
80121T	Chevrolet 396-454 tall deck
80122	Ford 260-351W
80123	Ford 351C-400
80124	Ford 429-460
80125	Pontiac 264-400

184

www.lunatteamshafts.com

LUNATI PERFORMANCE REPLACEMENT PUSHRODS "LPR"

Lunati Performance Replacement "LPR" pushrods are made of premium quality 1010 steel, heat treated for extra strength and rigidity where it is needed most - but at a highly affordable price for cost conscious engine builders. Once again, another prime example of the BEST PERFORMANCE VALUE in the business.

RODS

Chevrolet

Part Number	Engine Application	Diameter	Overall Length	End Type	Use with Guide Plates
83132	V8 262-400, Hydraulic Roller Cam	5/16"	7.290"	C&C	Yes
83134	V8 262-400, Stock Length	5/16"	7.794"	C & C	Yes
83133	V8 262-400, .100" Long	5/16"	7.894"	C & C	Yes
83144	V8 396-454, Stock Length	5/16"	8.280" IN	B&B	Yes
			9.252" EX		

Chrysler

Part	Engine	Diameter	Overall	End	Use with
Number	Application		Length	Type	Guide Plates
83759	V8 318-360, Non-Adj. Stock Length	5/16"	7.513"	C & C	Yes
83720	V8 318-360, Adjustable Rocker Arms	5/16"	7.495"	A & C	Yes
83740	V8 383 "Low Block" Non-Adj. Stock Length	5/16"	8.555"	C & C	Yes
83718	V8 440 "Tall Block" Non-Adj. Stock Length	5/16"	9.295"	C&C	Yes
83743	V8 440 "Tall Block" Adjustable Rocker Arms	3/8"	9.445"	A & E	Yes

Ford

Part Number	Engine Application	Diameter	Overall Length	End Type	Use with Guide Plates
83748	V8 260-302, Non-Adj. Stock Length	5/16"	6.886"	C & C	Yes
83747	V8 351W, Stock Length	5/16"	8.144"	C & C	Yes
83750	V8 351C, Stock Length	5/16"	8.408"	C & C	Yes
83274	V8 429-460, Stock Length	5/16"	8.555"	C & C	Yes

Pontiac

Part Number	Engine Application	Diameter	Overall Length	End Type	Use with Guide Plates
83726	V8 All, Stock Length	5/16"	9.130"	C & C	Yes
83727	V8 All, With Chevy Lifters	5/16"	9.290"	C & C	Yes

Pro-Series Pushrods

Lunati "Pro-Series" pushrods listed below have specially formed one piece swedged ends and are heat treated carbonitrited chrome-moly steel which gives the Pro-Series pushrods remarkable strength for high spring pressure, high RPM engines - which need every ounce of that elusive "winning edge"!

Chevrolet

Part Number	3	Diameter	Overall Length	End Type	Use with Guide Plates
82430	V6 292, Stock Length	5/16"	11.382"	C & C	Yes
82720	V8 283-400,600" Short - Std. OE Hydraulic Roller	5/16"	7.200"	C & C	Yes
82730	V8 283-400,500" Short - Std. Retrofit Hydraulic Rolle	er 5/16"	7.300"	C & C	Yes
82735	V8 283-400,450" Short	5/16"	7.350"	C & C	Yes
82135	V8 283-400,100" Short	5/16"	7.700"	C & C	Yes
82134	V8 283-400, Stock Length	5/16"	7.794"	C & C	Yes
82154	V8 283-400, .50" Long	5/16"	7.844"	C & C	Yes
82133	V8 283-400, .100" Long	5/16"	7.894"	C & C	Yes
82138	V8 283-400, .150" Long	5/16"	7.944"	C & C	Yes
82139	V8 283-400, .200" Long	5/16"	7.994"	C & C	Yes
82140	V8 283-400, .250" Long	5/16"	8.044"	C & C	Yes
82141	V8 283-400, .300" Long	5/16"	8.094"	C & C	Yes
82747	V8 283-400, .350" Long	5/16"	8.144"	C & C	Yes
82155	V8 283-400, .400" Long	5/16"	8.194"	C & C	Yes
82156	V8 283-400, .450" Long	5/16"	8.244"	C & C	Yes
82136	V8 283-400, Stock Length	3/8"	7.794"	C & C	Yes
82137	V8 283-400, .100" Long	3/8"	7.894"	C & C	Yes
82146	V8 396-454, .100" Long	3/8"	8.380" IN 9.350" EX	D&D	Yes
82150	V8 396-454, Hydraulic Roller - Stock Length	5/16"	7.780" IN 8.760" EX	D&D	Yes
82150T	V8 396-454, Hydraulic Roller - Stock Length	3/8"	7.780" IN 8.760" EX	D&D	Yes
82145	V8 396-454, TRUCK BLOCK - Stock Length (+.400" over Pass.)	3/8"	8.680" IN 9.650" EX	D & D	Yes
82147	V8 396-454, TRUCK BLOCK100" Long	3/8"	8.780" IN 9.750" EX	D&D	Yes

186

www.lunaticamshafts.com

PRO-SERIES PUSHRODS - (CONTINUED)

Chrysler

Part Number	Engine Application	Diameter	Overall Length	End Type	Use with Guide Plates
82740	V8 383 "Low Block" Non-Adj. Stock Length	5/16"	8.555"	C & C	Yes
82718	V8 440 "Tall Block" Non-Adj. Stock Length	5/16"	9.295"	C&C	Yes

CAMSHAFTS

Ford

Part	Engine	Diameter	Overall	End	Use with
Number	Application		Length	Туре	Guide Plates
82745	V8 260-302, Use with Pre-85 Retro fit hyd. roller	5/16"	6.400"	C & C	Yes
82704	V8 260-302, Adjustable Rocker Arms	5/16"	6.776"	C&C	Yes
82748	V8 260-302, Non-Adj. Stock Length - Early 289-302	5/16"	6.886"	C & C	Yes
82747	V8 351W, Stock Length	5/16"	8.144"	C&C	Yes
82750	V8 351C, Stock Length	5/16"	8.408"	C & C	Yes
82753	V8 Boss 351, Stock Length	3/8"	8.492"	C&C	Yes
82705	V8 332-428, Adjustable Rocker Arms	3/8"	9.310"	A & B	Yes
82706	V8 332-428, Adjustable Rocker Arms w/ Shell Lifter	3/8"	10.650"	A & B	Yes
82709	V8 332-428, Adjustable Rocker Arms w/ Roller Lifter	3/8"	9.000"	A & B	Yes

VALVE TRAIN

PISTON.

Pontiac

Part	Engine	Diameter	Overall	End	Use with
Number	Application		Length	Type	Guide Plates
82726	V8 All, Stock Length	5/16"	9.130"	C & C	Yes
82727	V8 All. With Chevy Lifters	5/16"	9.290"	C & C	Yes

RODS

CRANKSHAFTS

107

Dealer (Inc. 1800-465-5391/Tech (Inc. 901-865-0950

Pro-Series Custom Pushrods & Accessories

Any time valve train geometry is changed due to milling the heads, small base circle cams, different rocker arm ratios, etc., it becomes necessary to replace your stock length pushrods with custom built pushrods. Lunati can help off set this expense by providing the exact length pushrod you need without the wait for custom units to be built.

Chevrolet

Part Number	Engine Application	Diameter	Overall Length	Use with Guide Plates
82720	SBC OE Hyd. Roller	5/16"	7.200"	Yes
82730	SBC Retrofit Hyd Roller	5/16"	7.200"	Yes
82735	SBC +.050" Hyd. Roller	5/16"	7.350"	Yes
82135	SBC100"	5/16"	7.694"	Yes
82134	SBC stock length	5/16"	7.794"	Yes
82136	SBC stock length	3/8"	7.794"	Yes
82154	SBC +.050"	5/16"	7.734	Yes
82133	SBC +.100"	5/16"	7.894"	Yes
82137	SBC +.100"	3/8"	7.894"	Yes
82138	SBC +.150"	5/16"	7.094	Yes
82139	SBC +.200"	5/16"	7.994"	Yes
82140	SBC +.250"	5/16"	8.044"	Yes
82141	SBC +.300"	5/16"	8.094"	Yes
82747	SBC +.350",351W Std.	5/16"	8.144"	Yes
82155	SBC +.400"	5/16"	8.194"	Yes
82156	SBC +.450"	5/16"	8.244"	Yes
82158I	BBC truck intake	3/8"	8.180"	Yes
82158X	BBC truck exhaust	3/8"	9.160"	Yes
82144I	BBC stock length intake	3/8	"8.280"	Yes
82144X	BBC stock length exhaust	3/8"	9.252"	Yes
82146I	BBC +.100" intake	3/8"	8.380"	Yes
82146X	BBC +.100" exhaust	3/8"	9.352"	Yes
82145I	BBC truck intake	3/8"	8.680"	Yes
82145X	BBC truck exhaust	3/8"	9.652"	Yes
821471	BBC +.100" truck intake	3/8"	8.780"	Yes
82147X	BBC +.100" truck exhaust	3/8"	9.752"	Yes
82151I	BBC +.150" truck intake	3/8"	8.830"	Yes
82151X	BBC +.150" truck exhaust	3/8"	9.802"	Yes
82152I	BBC +.250" truck intake	3/8"	8.930"	Yes
82152X	BBC +.250" truck exhaust	3/8"	9.852"	Yes
82153I	BBC intake	3/8"	8.950"	Yes
82153X	BBC exhaust	3/8"	9.900"	Yes

188

www.lunalicamshafts.com

PRO-SERIES CUSTOM LENGTH PUSHRODS - (CONTINUED)

Ford

Part Number	Engine Application	Diameter	Overall Length	Use with Guide Plates
82745	SBF Early Retrofit	5/16"	6.400"	Yes
82704	SBF	5/16"	6.750"	Yes
82750	Ford 351C	5/16"	8.408"	Yes
82753	Boss 351	3/8"	8.492"	Yes

CAMSHAFTS

RODS

Pontiac

Part Number	Engine Application	Diameter	Overall Length	Use with Guide Plates
82726	Pontiac V8	5/16"	9.130"	Yes
82727	Pont_w/ Chevrolet lifters	5/16"	9.290"	Yes

PUSHROD ACCESSORIES

Guide Plates

Lunati pushrod guide plates are made from high quality, heat treated, black oxide coated steel to not only look good but to fill the need for absolute control of side to side movement of the pushrod.

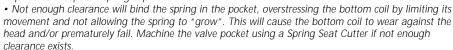
Part Number	Description
86516	Small block Chevrolet 5/16"
86380	Small Block Chevrolet 3/8"
86454	Big Block Chevrolet 3/8"
26220	Ford 289-302-351\W 5/16"

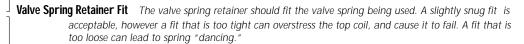
Design Three 1:000-455-5591/Tech Three 901-855-0950

Valve Spring Technical Information

VALVE SPRING TECHNICAL INFORMATION

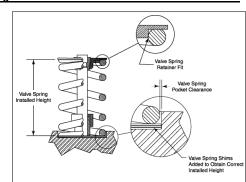
How To Get The Most Out Of Your Lunati Valve Springs


Valve Spring Fitment


Valve Spring Pocket Clearance

Valve spring pocket clearance is the gap between the inside diameter of the valve spring pocket (or cup, if used) and the outside diameter of the valve spring.

• Too much clearance will result in the spring "dancing" around in the head, which "beats up" the spring mounting surface and the spring itself. If this is the case, a spring cup may be used.


Additional machining of the spring pocket may be required to accept the spring cup.

Valve Spring Installed Height The installed height of the valve spring is the distance between the valve pocket (or cup, or shims) and the outer edge of the spring retainer (which is the height of the valve spring) when the valve is closed. To check installed height, follow the following procedure:

- 1. Install the valve in the guide.
- 2. Install the retainer and valve locks.
- 3. Install all spring cups and/or valve spring shims (basically, everything except the valve spring).
- 4. Hold the valve closed by pulling the retainer up tightly against the valve locks.
- 5. Measure the distance between the outside edge of the valve spring retainer and the spring seat. A snap gage or a height micrometer should be used.
- Check the distance against what is recommended on the camshaft specification card. An installed height of +/- 0.020" is acceptable.
- 7. If the installed height is not within 0.020", either machining of the valve pocket, or removal/installation of valve spring shims is necessary.
- 8. Repeat this procedure for the rest of the valves.

www.lunaticamshafts.com

VALVE SPRING TECHNICAL INFORMATION

Spring Retainer to Valve Seal Clearance

The distance between the innermost step on the valve spring retainer and the valve guide must be 0.090" larger than the maximum valve lift of the camshaft. Measure the distance between the top of the valve seal to the bottom of the valve spring retainer. After adding 0.090" to your measurement, it should still be larger than the maximum valve lift of the camshaft. If not, machining of the valve guide in necessary for adequate clearance.

Valve Spring Retainer to Valve Seal Clearance (0.090* minimum)

Valve Spring Coil Clearance (0.060* minimum)

SHAFTS

ALVE TRAIN

PSTUNS

RODS

CRANKSHAFTS

ENGAL KITS

Valve Spring Coil Clearance

Coil clearance is the distance between the valve spring coils when the valve is it maximum lift (fully open). A minimum of 0.060" must exist between the coils at maximum lift. Coil bind is when the valve spring is compressed fully-to the point that all of the coils are "stacked up" on top of each other. .100 is recommended for high RPM applications. Coil bind is a catastrophic condition that will result in valve train failure.

Disassemble each spring (if multiple springs are employed at each valve). Check all the springs (both inner, and outer springs) If there is not 0.060" - 0.100" minimum of clearance between the coils, the solutions are: the valve retainer, the valve locks, the valve, or the spring must be changed; the spring pocket must be machined. Keep in mind that these modifications will change the valve spring installed height.

Retainer to Rocker Arm Clearance

When installing the rocker arms, check to see that the inside of the rocker arms clear the spring retainers. Many rocker arms have a "relief" to accommodate large valve spring retainers.

• Valve Spring Run-In

Each set of Lunati valve springs are hand-selected to keep load variations below +/- 10% of the next. However, it is important to "run in" your new valve springs at low RPM using the following procedure:

- 1. Start the engine and run the engine between 1500 and 2000 RPM until the engine reaches operating temperature.
- 2. Shut off the engine and allow the springs to cool.
- After initial run-in, most springs will lose a slight amount of pressure. Re-check and shim up the valve springs if necessary. After the springs are "run in," spring pressure should remain constant until the point of replacement.

Rocker Arm to Retainer Clearance

VALVENIAVALIA

Chrome Silicon, H-11 & Pro Mod Spring Sets

VALVE SPRING SETS

Chrome Silicon Single Spring Sets

Lunati Chrome Silicon single valve springs with damper are manufactured from the finest chrome silicon wire available today. Lunati Chrome Silicon valve springs are excellent for use in your street machine or Saturday night bracket car.

Part Number	Installed Height	Installed Load	Height 2	Load 2	Coil Bind Height	OD	ID***	Max Lift	Damper	Retainer
73842-8	1.550	80	1.250	184	0.938	1.410	1.026	0.552	YES	75966
73090	1.620	80	1.250	165	0.985	1.450	1.086	0.575	YES	75702
73084	1.750	115	1.250	250	1.080	1.450	1.080	0.610	YES	75702
73262	1.660	96	1.250	238	1.100	1.495	1.080	0.500	YES	75702
73943	1.750	108	1.250	339	1.060	1.266	0.883	0.630	YES	75704
73126	1.800	100	1.250	294	1.100	1.500	1.086	0.640	YES	75702
73815	1.820	120	1.250	312	1.100	1.500	1.086	0.660	YES	75702
73236	1.930	135	1.250	355	1.200	1.540	1.125	0.670	YES	75713

^{***} This dimension does not include flat damper thickness

Chrome Silicon Dual Spring Sets

Lunati Chrome Silicon dual valve springs are manufactured from the finest chrome silicon wire available today. Lunati Chrome Silicon valve springs are excellent for use in your street machine or Saturday night bracket car.

Part Number	Installed Height	Installed Load	Height 2	Load 2	Coil Bind Height	OD	ID	Max Lift	Damper	Retainer
73884-8	1.650	90	1.250	176	0.927	1.304	0.754	0.663	NO	75933
73949	1.650	120	1.250	265	0.950	1.440	0.745	0.640	YES	75702
73838	1.690	110	1.250	302	0.950	1.465	0.807	0.680	NO	75702
73110	1.850	110	1.250	300	1.070	1.440	0.700	0.720	YES	75702
73124	1.880	136	1.250	355	1.150	1.500	0.766	0.670	YES	75702
73100	1.850	125	1.250	328	1.070	1.450	0.740	0.720	YES	75502
73121	1.940	140	1.250	400	1.150	1.526	0.775	0.730	YES	75513
73264	1.880	120	1.250	425	1.100	1.500	0.700	0.720	YES	75702
73899	1.850	197	1.250	533	1.110	1.500	0.802	0.680	NO	75502
73367	1.950	210	1.250	550	1.150	1.550	0.740	0.740	YES	75513

73110 IS A REPLACEMENT SPRING FOR HOLLEY SMALL BLOCK CYLINDER HEADS!

192

www.lunaliteamshafts.com

VALVE SPRING SETS

H-11 Steel Dual Spring Sets

The racer's choice for exceptionally long spring life and resistance to breakage and fatigue is the H-11Valve Spring. Designed for high lift race cams, the Lunati H-11 valve springs have 5 times more chrome in the material than Chrome Silicon valve springs, plus nickel, molybdenum and vanadium, metals that make stronger and more resistant to the effects of engine temperature and fatigue. Chrome Silicon makes an excellent valve spring for normal high performance applications, but in high stress race applications, H-11 represents a far better alternative than Chrome Silicon.

Installed Installed Height Load

Number	Height	Load	2	2	Height		Lift		
74150*	1.750	120	1.250	350	1.100	1.260 0.880	0.590	YES	75704
74500	1.850	200	1.250	550	1.070	1.525 0.730	0.720	YES	76102
74300	1.850	200	1.250	560	1.080	1.625 0.770	0.710	YES	76110
74301	1.950	210	1.250	680	1.100	1.625 0.770	0.790	YES	76110
74555	1.900	230	1.250	630	1.025	1.550 0.725	0.815	YES	76113
74302	2.050	250	1.250	745	1.150	1.650 0.770	0.840	YES	76110

Coil Bind

Pro Mod Dual Spring Sets

Part

Lunati PRO MOD Valve Springs were designed for serious racers. Oval track applications, bracket racers and serious pro street applications can benefit from the quality of the Pro Mod spring. Higher stress loads with no sacrifice in durability and Statistical Process Control assures maximum performance for the life of the valve spring. Each spring is rate checked to insure proper tension and exacting rate.

RODS

CRANKSHAFTS

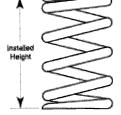
Part Number	Installed Height	Installed Load	Height 2	Load 2	Coil Bind Height	OD	ID	Max Lift	Damper	Retainer
73010	1.850	120	1.250	320	1.070	1.450	0.700	0.720	YES	75702
73015*	1.820	120	1.250	312	1.100	1.500	1.086	0.660	YES	75702
73021	1.940	143	1.250	406	1.050	1.540	0.861	0.830	NO	75713
73043*	1.750	108	1.250	339	1.060	1.266	0.883	0.630	YES	75704
73067	1.950	226	1.250	591	1.150	1.550	0.740	0.740	YES	76113
73099	1.850	197	1.250	533	1.110	1.500	0.802	0.680	NO	76102

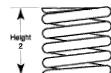
Notes: * Indicates a single spring

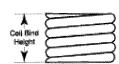
Dealer Cine: 1:800:455:5391/Tech Cine: 901:355:095

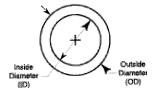
Pro Rev Dual Spring Sets & Specs

VALVE SPRING SETS


Pro Rev Steel Dual Spring Sets


Lunati Pro Rev Valve Springs are the ultimate in performance valve springs. The material used in the Pro Rev can handle 15% higher stress with the same durability as other springs. We also have specialized certification on the raw material to ensure continued quality on each run of springs. Statistical Process Control is used in manufacturing to ensure minimum interference fit along with proper sizing of the spring. Cycle fatigue testing is done on each lot of springs along with all springs being 100% checked for rate.




Part Number	Installed Height	Installed Load	Height 2	Load 2	Coil Bind Height	OD	ID	Max Lift	Damper	Retainer
74012	2.100	225	1.250	747	1.145	1.550	0.735	0.895	YES	76113
74013	2.050	225	1.250	747	1.145	1.550	0.735	0.845	YES	76113
74014	2.000	225	1.250	625	1.180	1.550	0.700	0.760	YES	76113
74021	1.950	225	1.250	660	1.200	1.550	0.730	0.690	YES	76113
74210**	2.000	340	1.250	850	1.130	1.650	0.636	0.810	NO	76107
74220**	2.100	330	1.250	925	1.130	1.650	0.645	0.910	NO	76107

Notes: * Indicates a single spring

194

www.funatieamshafts.com

^{**} Indicates a triple spring

VALVE SPRING SPECS CHART

	Part Numbers											
	73010	73015	73021	73043	73067	73084	73090	73099	73100	73110	73121	7312
Installed Heig	ht 1.850	1.820	1.940	1.750	0.950	1.750	1.620	1.850	1.850	1.850	1.940	1.88
Outside Diam		1.020	1.940	1.730	0.950	1.750	1.020	1.000	1.000	1.000	1.940	1.00
	1.450	1.500	1.540	1.266	1.550	1.450	1.450	1.500	1.450	1.440	1.526	1.50
Inside Diamet	er 0.700	1.086	0.861	0.883	0.740	1.080	1.086	0.802	0.740	0.700	0.775	0.76
Maximum Lift	0.720	0.660	0.830	0.630	0.740	0.610	0.575	0.680	0.720	0.720	0.730	0.67
Coil Bind Heig	ht 1.070	1.100	1.050	1.060	1.150	1.080	0.985	1.110	1.070	1.070	1.150	1.15
Rate (lb/in)												
Spring Type	342	337	381	462	521	270	230	560	338	317	377	34
Damper	Dual	Single	Dual	Single	Dual	Single	Single	Dual	Dual	Dual	Dual	Du
Dallipei	Yes	Yes	No	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Ye
2.400												
2.350 <u> </u>											_	
2.250												
2.200 2.150												
2.100			82		148							
2.050			101		174						99	
2.000	74		120		200			113	74	63	117	94
1.950	91	76	139		226			141	91	78	136	11
1.900	108	93	158	39	252	75		169	108	94	155	12
1.850	125	110	177	62	278	88		197	125	110	174	14
1.800	142	127	196	85	304	102		225	142	126	193	16
1.750	159	144	215	108	330	115	50	253	159	142	212	18
1.700	176	160	234	131	356	129	62	281	176	158	230	19
1.650	193	177	253	154	382	142	73	309	193	173	249	21
1.600	210	194	273	177	409	156	85	337	210	189	268	23
1.550	228	211	292	200	435	169	96	365	227	205	287	25
1.500	245	228	311	224	461	183	108	393	243	221	306	26
1.450	262	245	330	247	487	196	119	421	260	237	325	28
1.400	279	261	349	270	513	210	131	449	277	253	343	30
1.350	296	278	368	293	539	223	142	477	294	268	362	32
1.300	313	295	387	316	565	237	154	505	311	284	381	33
1.250	330	312	406	339	591	250	165	533	328	300	400	35
1.200	347	329	425	362	617	264	176	561	345	316	419	37
1.150	364	346	444	385	643	277	188	589	362	332	438	39
1.100	381	363	463	408	0-10	291	199	000	379	348	700	03
1.050	001	500	482	400		201	211		010	0-10		
			702									
1.000							222					

Load (Lbs)

<u> 195</u>

CAMSHAFTS

WALVE TRAIN

PSTONS

RODS

CRANKSHAFTS

BIGHE KITS

VALVE TIVATIV

Spring Specs

VALVE SPRING SPECS CHART

				Part	Numbe	r					
73126	73236	73262	73264	73367	73815	73838	73842-8	73884-8	73899	73943	73949
ght											
1.800	1.930	1.660	1.880	1.950	1.820	1.690	1.550	1.650	1.850	1.750	1.650
1.500	1.540	1.495	1.500	1.550	1.500	1.465	1.410	1.304	1.500	1.266	1.440
	1.125	1.080	0.700	0.740	1.086	0.807	1.026	0.754	0.802	0.883	0.745
t											
ght	0.670	0.500	0.720	0.740	0.000	0.660	0.552	0.003	0.660	0.630	0.640
1.100	1.200	1.100	1.100	1.150	1.100	0.950	0.938	0.927	1.110	1.060	0.950
355	324	346	484	486	337	438	345	215	560	462	363
Single	Single	Single	Dual	Dual	Single	Dual	Single	Dual	Dual	Single	Dual
Yes	Yes	Yes	Yes	Yes	Yes	Nο	Yes	No	No	Yes	Yes
100	100	100	100	100	100	110	100	110	110	100	100
				407							
	06									-	
			60						110		
46					76					-	
										20	
		40				0.4					
											66
											84
											102
											120
											138
											156
											174
											193
											211
			377	501		258					229
276	339	221	401	526	295	280	166	165	505	316	247
	355	238	425	550	312	302	184	176	533	339	265
312	371	255	449	574	329	324	201	187	561	362	283
330		273	473	599	346	345	218	198	589	38	5301
347		290	498		363	367	235	208		408	319
						389	252	219			337
						411	270	230			356
						433	287	241			374
	9ht 1.800 1.800 1.800 1.500 1.086 1.100 1.100 355 Single Yes 46 64 81 100 117 135 152 170 188 205 223 241 259 276 294 312 330	96 1.800 1.930 1.800 1.930 1.540 1.500 1.540 1.105 1.086 1.125 1.086 1.125 1.100 1.200 1.355 324 Single Single Yes Yes 96 112 46 129 64 145 81 161 100 177 117 193 135 209 152 226 170 242 188 258 205 274 223 290 241 306 259 323 276 339 294 355 312 371 330	96 1.800 1.930 1.660 Neter 1.500 1.540 1.495 Neter 1.086 1.125 1.080 0.640 0.670 0.500 Ontil 1.100 1.200 1.100 355 324 346 Single Single Single Yes Yes Yes 96 112 46 129 64 145 81 161 100 177 48 117 193 65 135 209 82 152 226 99 170 242 117 188 258 134 205 274 151 223 290 169 241 306 186 259 323 203 276 339 221 294 355 238 312 371 255 330 273	96	73126 73236 73262 73264 73367 9ht	73126 73236 73262 73264 73367 73815 1.800 1.930 1.660 1.880 1.950 1.820 1.500 1.540 1.495 1.500 1.550 1.500 1.086 1.125 1.080 0.700 0.740 1.086 1.100 1.200 1.100 1.100 1.150 1.100 355 324 346 484 486 337 Single Single Single Dual Dual Single Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 1.100 1.200 1.100 1.100 234 93 81 161 135 259 110 100 177 48 159 283 127 117 193 65 183 307 144 135 209 82 207 331 160 152 226 99 231 356 177 170 242 117 256 380 194 188 258 134 280 404 211 205 274 151 304 429 228 223 290 169 328 453 245 241 306 186 352 477 261 259 323 203 377 501 278 276 339 221 401 526 295 294 355 238 425 550 312 312 371 255 449 574 329 330 273 473 599 346	1.800 1.930 1.660 1.880 1.950 1.820 1.690 1.500 1.540 1.495 1.500 1.550 1.500 1.465	1.800	73126 73236 73262 73264 73367 73815 73838 73842-8 73884-8 73126 73236 73262 73264 73367 73815 73838 73842-8 73884-8 73126 73236 73236 73262 73264 73367 73815 73838 73842-8 73884-8 73126 73236 73236 73262 73264 73367 73815 73838 73842-8 73884-8 73126 73236 73246 73260 1.880 1.950 1.820 1.690 1.550 1.650 1.500 1.540 1.495 1.500 1.550 1.500 1.465 1.410 1.304 1.086 1.125 1.080 0.700 0.740 1.086 0.807 1.026 0.754 1.086 1.125 1.080 0.720 0.740 0.660 0.680 0.552 0.663 1.100 1.200 1.100 1.100 1.150 1.100 0.950 0.938 0.927 355 324 346 484 486 337 438 345 215 Single Single Single Dual Dual Single Dual Single Dual Yes Yes Yes Yes Yes Yes No Yes No 137 96 161 161 112 62 186 46 145 110 234 93 81 161 135 259 110 100 177 48 159 283 127 61 58 117 193 65 183 307 144 83 68 135 209 82 207 331 160 105 28 79 152 226 99 231 356 177 127 46 90 170 242 117 256 380 194 149 63 101 170 242 117 256 380 194 149 63 101 188 258 134 280 404 211 170 80 112 205 274 151 304 429 228 192 97 122 223 290 169 328 453 245 214 115 133 241 306 186 352 477 261 236 132 144 259 323 203 377 501 278 258 149 155 226 339 221 401 526 295 280 166 165 229 333 203 377 501 278 258 149 155 226 339 221 401 526 295 280 166 165 312 344 255 238 425 550 312 302 184 176 333 347 290 498 363 367 235 208 389 252 219	73126 73236 73262 73264 73367 73815 73818 73842-8 73884-8 73899 73126 73236 73262 73264 73367 73815 73838 73842-8 73884-8 73899 73126 73236 73262 73264 73367 73815 73838 73842-8 73884-8 73899 73126 73236 73262 73264 73367 73815 73838 73842-8 73884-8 73899 73126 73236 73262 73264 73367 73815 73838 73842-8 73884-8 73899 73127 73126 73236 73262 73264 73262	73126 73236 73262 73264 73367 73815 73838 73842-8 73884-8 73899 73943 751 1.800 1.930 1.660 1.880 1.950 1.820 1.690 1.550 1.650 1.850 1.750 1.500 1.540 1.495 1.500 1.550 1.500 1.465 1.410 1.304 1.500 1.266 751 1.086 1.125 1.080 0.700 0.740 1.086 0.807 1.026 0.754 0.802 0.883 751 1.000 1.200 1.100 1.100 1.150 1.100 0.950 0.938 0.927 1.110 1.060 751 1.100 1.200 1.100 1.100 1.150 1.100 0.950 0.938 0.927 1.110 1.060 751 1.550 1.550 1.550 1.550 0.683 0.680 0.630 752 1.550 1.550 1.550 1.100 0.950 0.938 0.927 1.110 1.060 753 324 346 484 486 337 438 345 215 560 462 752 1.550 1.550 1.550 1.550 1.550 1.550 0.663 0.680 0.630 753 1.100 1.200 1.100 1.100 1.150 1.100 0.950 0.938 0.927 1.110 1.060 752 1.550 1.550 1.550 1.100 0.950 0.938 0.927 1.110 1.060 753 1.100 1.200 1.100 1.100 1.150 1.100 0.950 0.938 0.927 1.110 1.060 754 1.550 1.550 1.550 1.550 1.550 1.550 0.663 0.680 0.630 755 1.550 1.550 1.100 0.950 0.938 0.927 1.110 1.060 755 1.550 1.550 1.100 0.950 0.938 0.927 1.110 1.060 755 1.550 1.550 1.100 0.950 0.938 0.927 1.110 1.060 755 1.550 1.550 1.100 0.950 0.938 0.927 1.110 1.060 755 1.550 1.550 1.100 0.950 0.938 0.927 1.110 1.060 755 1.550 1.550 1.100 0.950 0.938 0.927 1.110 1.060 755 1.550 1.550 1.100 0.950 0.938 0.927 1.110 1.060 755 1.550 1.550 1.100 0.950 0.938 0.927 1.110 1.060 755 1.550 1.550 1.000 0.938 0.927 1.110 1.060 755 1.550 1.550 1.000 0.938 0.927 1.110 1.000 755 1.550 1.550 1.000 0.938 0.927 1.110 1.060 755 1.550 1.550 1.000 0.950 0.938 0.927 1.110 1.060 755 1.550 1.550 1.550 1.100 0.950 0.938 0.927 1.110 1.060 755 1.550 1.550 1.550 1.100 0.950 0.938 0.927 1.110 1.060 755 1.550 1.550 1.100 0.950 0.938 0.927 1.110 1.060 755 1.550 1.550 1.100 0.950 0.938 0.927 1.110 1.060 755 1.550 1.550 1.100 0.950 0.938 0.927 1.110 1.060 755 1.550 1.550 1.100 0.950 0.938 0.927 1.110 1.060 755 1.550 1.550 1.550 1.100 0.950 0.938 0.927 1.110 1.060 755 1.550 1.550 1.550 1.100 0.950 0.928 0.927 1.110 1.000 755 1.550 1.550 1.550 1.100 0.950 0.938 0.927 1.110 1.000 755 1.550 1.550 1.550 1.550 1

196

www.lunaticamshafts.com

VALVE SPRING SPECS CHART

Height (inches)

VALVE SPRING SPECS CHARI												
Part Number												
	74012	74013	74014	74021	74150	74210	74220	74300	74301	74302	74500	74555
Installed H	2.100	2.050	2.000	1.950	1.750	2.000	2.100	1.850	1.950	2.050	1.850	1.900
Outside Dia	1.550	1.550	1.550	1.550	1.260	1.650	1.650	1.625	1.625	1.650	1.525	1.550
Inside Diar	0.735	0.735	0.700	0.730	0.880	0.636	0.645	0.770	0.770	0.770	0.730	0.725
Maximum	0.895	0.845	0.760	0.690	0.590	0.810	0.910	0.710	0.790	0.840	0.720	0.815
Coil Bind H	1.145	1.145	1.180	1.200	1.100	1.130	1.130	1.080	1.100	1.150	1.070	1.025
Spring Typ	614	653	533	621	460	680	700	610	671	619	583	615
Damper	Dual	Dual	Dual	Dual	Single	Triple	Triple	Dual	Dual	Dual	Dual	Dual
7	Yes	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes
2.400 2.350												
2.300	-											
2.250	133						225					
2.200	164	127					260			157		
2.150	194	160	145			238	295			188		
2.100	225	192	172	132		272	330		109	219		
2.050	256	225	198	163		306	365		143	250		138
2.000	286	258	225	194		340	400	110	176	281	113	168
1.950	317	290	252	225		374	435	140	210	312	142	199
1.900	348	323	278	256	51	408	470	170	244	343	171	230
1.850	379	356	305	287	74	442	505	200	277	374	200	261
1.800	409	388	332	318	97	476	540	230	311	405	229	292
1.750	440	421	358	349	120	510	575	260	344	436	258	322
1.700	471	453	385	380	143	544	610	290	378	467	288	353
1.650	501	486	412	411	166	578	645	320	411	498	317	384
1.600	532	519	438	443	189	612	680	350	445	528	346	415
1.550	563	551	465	474	212	646	715	380	479	559	375	445
1.500	593	584	492	505	235	680	750	410	512	590	404	476
1.450	624	617	518	536	258	714	785	440	546	621	433	507
1.400	655	649	545	567	281	748	820	470	579	652	463	538
1.350	686	682	572	598	304	782	855	500	613	683	492	568
1.300	716	714	598	629	327	816	890	530	646	714	521	599
1.250	747	747	625	660	350	850	925	560	680	745	550	630
1.200	778	780	652	691	373	884	960	590	714	776	579	661
1.150	808	812			396	918	995	620	747	807	608	692
1.100					419			650	781		638	722
1.050												753
1.000												
0.950												

Load (Lbs)

197

CAMSHAFTS

WALVE TRAIN

PSTONS

RODS

CRANKSHAFTS

BIGHE KITS

Dealer Cine: 1:000-455-5391/Tech Cine: 901:355-0950

VAI-VI- | 1174111V

Steel, Titanium 7 & 10-Degree Retainers

CHROMOLY STEEL 7-DEGREE RETAINERS

Lunati Chromoly steel retainers are precision manufactured from the best quality bar stock steel available. Steel retainers are available for 3/8" and 11/32" valve stem diameters and in 7° and 10° tapers. All steel retainers are black oxide coated for corrosion resistance

Retainer Part Number	Dimension A	Dimension B	Dimension C	Dimension D	Valve Stem Diameter	Use Locks Part Number
75704	1.225	0.875	N/A	0.615	11/327	7003
75933-8	1.250	0.985	N/A	0.745	7.91mm	77027-8
75967-8	1.250	0.985	N/A	0.745	11/32	77033-8
75966-8	1.375	0.960	N/A	0.705	11/32	77033-8
75702LUN	1.437	1.060	N/A	0.700	11/32 3/8 3/8	77034 77004 77012
					11/32	77006
75713LUN	1.5001	.125	N/A	0.700	11/32 3/8 3/8 11/32	77034 77004 77012 77006

Chromoly Steel 10-Degree Retainers

Lunati Chromoly steel retainers are precision manufactured from the best quality bar stock steel available. Steel retainers are available for 5/16", 3/8" and 11/32" valve stem diameters and in 7° and 10° tapers. All steel retainers are black oxide coated for corrosion resistance

Retainer Part Number	Dimension A	Dimension B	Dimension C	Dimension D	Valve Stem Diameter	Use Locks Part Number
75502LUN	1.437	1.060	N/A	0.700	5/16 11/32 3/8	77105 77103 77104
75513	1.500	1.125	N/A	0.700	5/16 11/32 3/8	77105 77103 77104

198

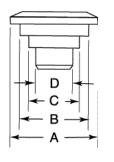
www.lunaticamshafts.com

TITANIUM 10 DEGREE RETAINERS

Lunati Titanium retainers are American made with the best bar stock available and are up to 40% lighter than a steel retainer. Titanium retainers are available for 5/16", 3/8" and 11/32" valve stem diameters and in 10° tapers. Take weight out of the valve train at the top of the valve.

-
_
_
-
77
~
_
-
_
- "

Retainer	Dimension	Dimension	Dimension	Dimension	Valve Stem	Use Locks
Part Number	Α	В	С	D	Diameter	Part Number
76102LUN	1.440	1.060	N/A	0.700	5/16	77105
					11/32	77103
					3/8	77104
76107LUN	1.500	1.180	0.870	0.635	5/16	77105
					11/32	77103
					3/8	77104
76110LUN	1.500	1.168	N/A	0.760	5/16	77105
					11/32	77103
					3/8	77104
76113LUN	1.500	1.102	N/A	0.700	5/16	77105
					11/32	77103
					3/8	77104


Steel and Titanium Retainers for Special Applications

Retainer Part Number	Description	Dimension A	Dimension B	Dimension C	Dimension D	Valve Stem Diameter	Use Locks Part Number
75912LUN	Steel Buick 11º	1.200	0.867	N/A	0.599	3/8	77095
75910LUN	Steel Buick 11º	1.375	1.075	N/A	0.698	3/8	77095
76120LUN	LS1 Titanium	1.115	-	N/A	0.873	8mm	Stock LS1

RODS

Retainer Interchange List

retainer inte	i Change List			
Titanium 10°	Steel 7°	Steel 10°	Valve Stem	Spring
Retainers	Retainers	Retainers	Diameter	0.D
N/A	75704	N/A	11/32"	1.300"
76102LUN	75702LUN	75502LUN	5/16"	1.430"-1.500"
76102LUN	75702LUN	75502LUN	11/32"	1.430"-1.500"
76102LUN	75702LUN	75502LUN	3/8"	1.430"-1.500"
76110LUN	N/A	75513	5/16"	1.625"
76110LUN	N/A	75513	11/32"	1.625"
76110LUN	N/A	75513	3/8"	1.625"
76113LUN	75713LUN	75513	5/16"	1.550"
76113LUN	75713LUN	75513	11/32"	1.550"
76113LUN	75713LUN	75513	3/8"	1.550"

CRANKSHAFTS

Design (Inc. 1800-455-5391)/Tech (Inc. 901-355-095)

V 41 - V - 11 1 4 4 1 1 V

7 & 10-Degree Valve Locks & Accessories

VALVE LOCKS

7-Degree Valve Locks

Lunati Valve locks are manufactured from Fatigue-Proof® Steel. Lunati Valve Locks are heat treated before being machined therefore greatly minimizing distortion.

Part Number	Stem Diameter	Notes	Used with Retainer Part Number
77003	11/32"	Single Groove	75704 only
77027-8	7.91mm	Ford Multi-groove	75933 only
77095	3/8"	Buick	75910 & 75912
77033-8	11/32"	Multi-groove	75966 & 75967
77034	11/32"	Single Groove	75702 & 75713
77004	3/8"	Single Groove	75702 & 75713
77012	3/8"	Chrysler 2/4 groove	75702 & 75713
77006	11/32"	Ford 351C 4 groove	75702 & 75713

10-Degree Valve Locks

Lunati Valve locks are manufactured from Fatigue-Proof® Steel. Lunati Valve Locks are heat treated before being machined therefore greatly minimizing distortion.

Part Number	Stem	Notes	Used with Retainer Part Number
77003	11/32"	Single Groove	75704 only
77027-8	7.91m	Ford Multi-groove	75933 only
77095	3/8"	Buick	75910 & 75912

200

www.lunatteamshafts.com

VALVE SPRING ACCESSORIES

Valve Lash Caps

Machined 8620 steel, heat treated and black oxided for high performance use. Used to protect valve stems or to correct valve train geometry.

Part Number	Application	Description
87105	5/16" Valve stem dia.	.427" O.D., .080" thick
87103	11/32"Valve stem dia.	.460" O.D., .080" thick
87104	3/8" Valve stem dia.	.490" O.D., .080" thick
87223-8	11/32" Valve stem dia.	for 2300cc Ford
87245-8	8 mm Valve stem dia.	for 2000cc Ford

Valve Spring Cups

Specially hardened machined valve spring cups. Black oxide finish, .062" thick. May require machining of head. (Qty of 16 per part number)

RODS

CRANKSHAFTS

Part Number	Application	0.D.	I.D.	Hole
86600	For 1-7/16 springs	1.550	1.450	.680"
86601	For 1-1/2 springs	1.680	1.560	.635"
86602	For 1-5/8 springs	1.750	1.625	.635"
86603	Rotator Spacer for	-	-	-
	BB Chevy .300" Thick			

Head Bolt Washer

Manufactured from hardened precision machined steel for accurate torque readings.

Part Number	Application	0.D.	I.D.	Thickness
86494	7/16" Head Bolt Washer	.850"	.445"	.105"

Design (Time: 1:300-455-5591)/Tech (Time: 901-355-095)

Valve Seals, Shims & Rocker Arms

VALVE SPRING ACCESSORIES

Valve Seals

Lunati's Raymond type valve seal provides superior oil control without starving the valve guide for needed lubrication.

Part Number	Valve DIA.	Guide DIA.
78135	11/32"	0.500
78132LUN	11/32"	0.530
78380	3/8"	0.625
78385	3/8"	0.530

Valve Spring Shims

Lunati's Valve spring shims are manufactured from durable steel shim stock and then zinc plated for corrosion resistance. (Qty of 16)

Part Number	Thick	0.D.	I.D.
86215A	0.015	1.250	0.812
86215B	0.030	1.250	0.812
86215C	0.060	1.250	0.812
86220A	0.015	1.311	0.995
86222A	0.015	1.356	0.642
86229A	0.015	1.440	0.765
86229B	0.030	1.440	0.765
86229C	0.060	1.440	0.765
86231A	0.015	1.500	0.700
86231B	0.030	1.500	0.700
86231C	0.060	1.500	0.700
86233A	0.015	1.500	0.645
86233B	0.030	1.500	0.645
86233C	0.060	1.500	0.645
86240A	0.015	1.625	0.645
86240B	0.030	1.625	0.645
86240C	0.060	1.625	0.645

202

www.lunaliteamshafts.com

ROCKER ARMS

"Long Slot" Replacement Stamped Steel Rocker Arms

These rockers are top quality steel alloy and spe cially stamped to resist flexing. They have long slots for use with high lift cams. They come com plete with slotted balls and lock nuts.

Part Number	Description	Stud Diameter	Ratio
85025	Sm. Chevy 1.5 Ratio - 3/8" Stud	3/8"	1.5
85028	Sm. Chevy 1.5 Ratio - 7/16" Stud	7/16"	1.5
85026	Small Block Chevy	3/8"	1.6
85027	Big Block Chevy .560" Max Lift	7/16"	1.7
85034	Ford FE Adj. Shaft Assy.	Shaft	-

Stamped Steel Roller Tip Rocker Arms

These rockers Feature roller tips to help eliminate friction and side loading of the valve stem. They are constructed from top quality steel alloy and specially stamped to resist flexing. They have long slots for use with high lift cams. They come complete with slotted balls and lock nuts.

Part Number	Description	Stud Diameter	Ratio
85035	Small Block Chevy 1.5 Ratio	3/8"	1.5
85037	Big Block Chevy.560" Max Lift	7/16"	1.7
850/5HIN	Small Block Ford	Padastal	16

CAMSHAFTS

VALVE TRAIN

PISTONS

RODS

CRANKSHAFTS

203

Dellar Ame 1:300-455-5391/Tech Ame 901:365-0950

Rocker Arms

KOCKEI AIIII

ROCKER ARMS

Anodized blue for long lasting good looks.

Premium aluminum alloy provides strength while absorbing valve train damaging harmonics under extreme racing conditions - better than the competition's "high-tech" rockers.

Lunati logo and rocker ratio are laser-etched into the body for easy identification and to let everyone know that the best rocker arms are at work in your engine.

Precision-machined "squirter" ensures that the trunnion, roller tip and valve spring receive plenty or oil for long life under extreme conditions.

Beefy, large diameter trunnion dwarfs the competition's for added durability at high RPM.

Tumble de-burred to smooth edges and reduce stress risers for a stronger rocker arm that goes the distance.

Pushrod cup is CNC machined to provide maximum performance with minimal pushrod wear.

"Clearanced" for large retainers.

Contoured body reduces weight without compromising durability.

Generous radii for maximum strength and reduced weight.

CNC machined from heat treated aircraft alloy extrusions for precise tolerances and long lasting performance.

204

www.lunalleamshafts.com

ALUMINUM ROLLER ROCKER ARMS

NEW AND IMPROVED!

Lunati's NEW and IMPROVED Aluminum roller rocker arms are extruded from premi um aircraft heat-treated aluminum alloy for maximum strength, then CNC machined to exacting tolerances for long lasting performance, before being tumble polished to reduce stress risers. Lunati then Installs needle bearing trunnions to with stand the high valve spring forces found in many of today's street and race engines. Lunati aluminum roller rockers are anodized blue for long lasting good looks and the Lunati name and rocker ratio are laser etched into the body for easy identifi cation and to let everyone know the best aluminum roller rockers are in your engine.

Part Number	Description ID	Stamp Diameter	Stud	Ratio
84146	Chevrolet 283-400	46	3/8"	1.5
84148	Chevrolet 283-400	48	7/16"	1.5
84149	Chevrolet 283-400	49	3/8"	1.6
84147	Chevrolet 283-400	47	7/16"	1.6
84155	Chevrolet 283-400	55	7/16"	1.65
84156	Chevrolet 283-400	47/48	7/16"	1.60/1.50
84157	Chevrolet 283-400	46/49	3/8"	1.60/1.50
84174	Chevrolet 396-454	74	7/16"	1.7
84150	Ford 351C-400	50	7/16"	1.73
84151	Ford 351C-400	51	7/16"	1.65
84160	Ford 260-351W	60	3/8"	1.6
84161	Ford 260-351W	60	7/16"	1.6
84170	Ford 429-460	74	7/16"	1.7
84178	Pontiac 265-455	78	7/16"	1.65

Note: Rocker arms do not include lock nuts

AMSHAFTS

ALVE TRAI

PISTONS

RODS

CRANKSHAFTS

<u> 205</u>

Dealer Cine: 1:800-455-5391/Tech Cine: 901-855-0950

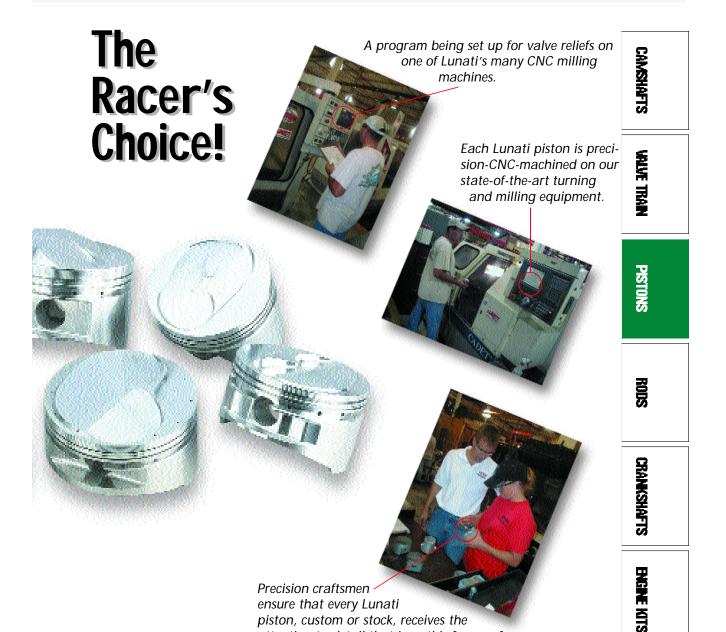
"THE HAREH'S

CHOICE!"

Introduction	212-213
Piston Technical	214-224
PISTON APPLICATION	ONS
Chevy Pistons	225-251
Ford Pistons	252-257
Ring Technical	259-260
Ring Applications	261-263
Service Parts	264-265

(211

CIDICIT

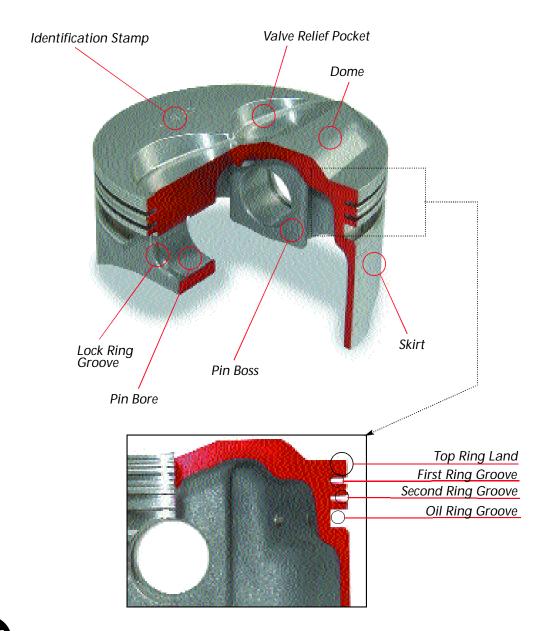

Introduction

INTRODUCTION

212

www.funaticamshafts.com

213


attention to detail that Lunati is famous for.

CNDICIT

Piston Anatomy & Piston Selection

PISTON ANATOMY

214

www.lunalitermshaffs.com

SELECTING A LUNATI PISTON SET FOR YOUR ENGINE

Small Block Chevrolet Flat Top Pistons for Holley Cylinder Heads - 4032 alloy

Length

inches

5.700

Stroke*

inches

3.500

3.500 5.700

Locate the piston section that matches your engine.

DESCRIPTION

13H1 2S1 Holley Flat Top 4032 (4.004)

1.550" Compression Height

13H1J2S2 Holley Flat Top 4032

Part

Number

Select the type of piston that fits your application to yield the desired com pression ratio range (Flat Top, Dome, Reverse Dome, Super Light, etc.,).

Bore

inches

4.020

After you are finished choosing your piston set, use the formulas on pages 223 & 224 to confirm your compression ratio.

Approx. Compression Ratio**

with this "cc" chamber

64

10.5:1

Effective Dome Volume Angle

CC

-4

-4

76

9.2:1

9.2:1

CAMSHAFTS

WALVE TRAIN

degrees

20

20

9.000

9.000

Deck*

Height

inches

Select the cylinder bore diameter.

11.4:1

11.3:1 (10.5:1)

Locate the piston family with the correct compression height to fit your rods, crank and block. To figure compression height, see pages 216-220.

ALLOY

Still can't find what you need? No Problem!

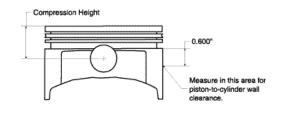
Lunati makes custom pistons to your specifications! Just call Lunati's expert piston designers at

901-365-0950!

CRANKSHATIS

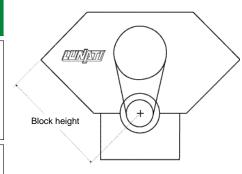
PICH KITS

Design Under 11:800-455-5391 / Tech Under 901-355-095



Compression, Block Height & Rod Length

WHAT COMPRESSION HEIGHT PISTON DO I NEED?


Before selecting a piston, the desired compression height must be known. As shown below, compression height is the distance between the centerline of the pin bore and the top of the piston. To determine the compression height needed for a particular engine combination, three things about the engine must first be known: block height, connecting rod length and crankshaft stroke length.

STOCK CHEVROLET V-8 BLOCK HEIGHTS

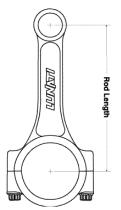
CALCULATE BLOCK HEIGHT

Deck height is measured from the crankshaft centerline to the deck (cylinder head mounting surface) of the block.

OTTO CITE TINO		-
Displacen	nent	
Cubic Inches	Liters	Deck Height (inches)
302	4.9	9.025
305	5.0	9.025
327	5.4	9.025
350	5.7	9.025
350 (LT5)	5.7	9.025
350 (LS1)	5.7	9.240
364 (LQ4)	6.0	9.240
383	6.3	9.025
400	6.6	9.025
396	6.5	9.800
402	6.6	9.800
427	7.0	9.800
454	7.4	9.800
502	8.2	9.800

STOCK FORD V-8 BLOCK HEIGHTS

Displacement		
Cubic Inches	Liters	Deck Height (inches)
289	4.7	8.206
302	5.0	8.206
302 (Boss)	5.0	8.201-8.210
302 (SVO)	5.0	8.201-8.210
351 W ('69-'70)	5.8	9.480
351 W ('71-'96)	5.8	9.503
351 (SVO 9.2)	5.8	9.206
351C (Boss)	5.8	9.206
351M	5.8	10.297
429 STD ('68-'70)	7.0	10.300
429 STD ('70 1/2-'71)	7.0	10.310
429 CJ/SCJ ('72-'73)	7.0	10.322
429 Boss (S)	7.0	10.300
429 Boss (T)	7.0	10.300
460	7.5	10.322
281 (modular)	4.6	8.937
331 (modular)	5.4	10.079


216

www.lunalieamshafis.com

WHAT COMPRESSION HEIGHT PISTON DO I NEED?

2 CALCULATE CONNECTING ROD LENGTH

Connecting rod length is measured between the centers of the "big end" (journal end - rotating) and the "little end" (piston pin end - reciprocating).

STOCK CHEVROLET V-8 CONNECTING ROD LENGTHS

Displacement Cubic Inches	Liters	Big End Dia. (inches)	Rod Length (inches)
302	4.9	2.1000	5.7000
305	5.0	2.1000	5.7000
327	5.4	2.1000	5.7000
350	5.7	2.1000	5.7000
350 (LT5)	5.7	2.1000	5.7400
350 (LS1)	5.7	2.2500	6.0980
383	6.3	2.1000	6.0000
400	6.6	2.1000	5.5650
396	6.5	2.2000	6.1350
402	6.6	2.2000	6.1350
427	7.0	2.2000	6.1350
454	7.4	2.2000	6.1350
502	8.2	2.2000	6.1350
377	6.2	2.2000	6.1350

STOCK FORD V-8 CONNECTING ROD LENGTHS

Displacement Cubic Inches	Liters	Big End Dia. (inches)	Rod Length (inches)
289	4.7	2.1232	F 1550
302	5.0	2.1232	5.1550 5.0900
	5.0	2.1232	5.1500
302 (Boss)		2.1226	5.1500
302 (SVO)	5.0		
351 W ('69-'70)	5.8	2.3110	5.9560
351 W ('71-'96)	5.8	2.3110	5.9560
351 (SVO 9.2)	5.8	2.3110	5.7800
351C (Boss)	5.8	2.3110	5.7800
351M	5.8	2.3107	6.5800
429 STD ('68-'70)	7.0	2.5000	6.6050
429 STD ('70 1/2-'71)	7.0	2.5000	6.6050
429 CJ/SCJ ('72-'73)	7.0	2.5000	6.6050
429 Boss (S)	7.0	2.5000	6.5490
429 Boss (T)	7.0	2.5000	6.6050
460	7.5	2.5000	6.6050
281 (modular)	4.6	2.0863	5.9331
331 (modular)	5.4	2.0863	6.6575

CAMSHAFTS

WALVE TRAIN

PSTORS

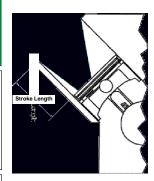
罗罗

CRANKSHAFTS

BONE KITS

217

Stroke Length & Compress. Height calculation


WHAT COMPRESSION HEIGHT PISTON DO I NEED?

3 CALCULATE STROKE LENGTH

Stroke length is twice the distance from the centerline of the crank shaft main bearing journals to the center-line of the connecting rod journals. It is also the distance the piston moves up and down in the cylinder.

STOCK CHEVROLET V-8 BORE & STROKE

Displace	ment		
Cubic Inches	Liters	Bore (inches)	Stroke (inches)
302	4.9	4.000	3.000
305	5.0	3.740	3.480
327	5.4	4.000	3.250
350	5.7	4.000	3.480
350 (LT5)	5.7	3.898	3.661
350 (LS1)	5.7	3.898	3.622
364 (LQ4)	6.0	4.000	3.622
383	6.3	4.000	3.800
400	6.6	4.125	3.750
396	6.5	4.094	3.766
402	6.6	4.125	3.766
427	7.0	4.250	3.766
454	7.4	4.250	4.000
502	8.2	4.470	4.000

STOCK FORD V-8 BORE & STROKE

Displacement			
Cubic Inches	Liters	Bore (inches)	Stroke (inches)
289	4.7	4.000	2.870
302	5.0	4.000	3.000
302 (Boss)	5.0	4.000	3.000
302 (SVO)	5.0	4.000	3.000
351 W ('69-'70)	5.8	4.000	3.500
351 W ('71-'96)	5.8	4.000	3.500
351 (SVO 9.2)	5.8	4.000	3.500
351C (Boss)	5.8	4.000	3.500
351M	5.8	4.000	3.500
429 STD ('68-'70)	7.0	4.360	3.590
429 STD ('70 1/2-'71)	7.0	4.360	3.590
429 CJ/SCJ ('72-'73)	7.0	4.360	3.590
429 Boss (S)	7.0	4.360	3.590
429 Boss (T)	7.0	4.360	3.590
460	7.5	4.360	3.850
281 (modular)	4.6	3.552	3.543
331 (modular)	5.4	3.552	4.165

218

www.lunaticamshafts.com

COMPRESSION HEIGHT CALCULATION

How Compression Height Is Calculated:

Compression height = block height - rod length - (0.5 x stroke)

Example: block height = 11.685"

rod length = 7.500" **stroke** = 5.500"

Compression height = block height - rod length - (0.5 x stroke)

Compression height = $11.685 - 7.500 - (0.5 \times 5.500)$

Compression height = 1.435"

Small Block Chevrolet Compression Height (9.000" deck)

					Rod Length	1			
		5.700"	5.850"	5.875"	6.000"	6.125"	6.200"	6.250"	6.300"
	2.750"	1.925"	1.775"	1.750"	1.625"	1.500"	1.425"	1.375"	1.325"
	3.000"	1.800"	1.650"	1.625"	1.500"	1.375"	1.300"	1.250"	1.200"
	3.250"	1.675"	1.525"	1.500"	1.375"	1.250"	1.175"	1.125"	1.075"
	3.335"	1.633"	1.483"	1.458"	1.333"	1.208"	1.133"	1.083"	1.033"
	3.480"*	1.550"	1.400"	1.375"	1.250"	1.125"	1.050"	1.000"	
	3.500"	1.550"	1.400"	1.375"	1.250"	1.125"	1.050"	1.000"	
5	3.550"	1.525"	1.375"	1.350"	1.225"	1.100"	1.025"		
	3.625"	1.488"	1.338"	1.313"	1.188"	1.063"			
	3.750"	1.425"	1.275"	1.250"	1.125"	1.000"			
	3.800"	1.400"	1.250"	1.225"	1.100"				
	3.875"	1.363"	1.213"	1.188"	1.063"				
	4.000"	1.300"	1.150"	1.125"	1.000"				
	4.125"	1.238"	1.088"	1.063"					
	4.250"	1.175"	1.025"	1.000"					
	* 8 990" D	eck height							

^{8.990&}quot; Deck height

Big Block Chevrolet Compression Height (9.780" deck)

		6.135"	6.385"	6.405"	6.535"	6.635"	6.700"	
	3.750"	1.770"	1.520"	1.500"	1.370"	1.270"	1.205"	
	4.000"	1.645"	1.395"	1.375"	1.245"			
20	4.125"	1.582"	1.332"	1.312"	1.182"			
	4.250"	1.520"	1.270"	1.250"				
	4.375"*	1.457"	1.207"	1.187"				

CAMSHAFTS

SELVE TRAIN

CRANKSHAFTS

PIGNE KITS

CNDICIT

Compression Height calc. & Other calculations

COMPRESSION HEIGHT CALCULATION

Big Block Chevrolet Compression Height (10.180" deck)

					Rod Length			
		6.135"	6.385"	6.405"	6.535"	6.635"	6.700"	6.800"
	3.750"	2.170"	1.920"	1.900"	1.770"	1.670"	1.605"	1.505"
	4.000"	2.045"	1.795"	1.775"	1.645"	1.545"	1.480"	1.380"
	4.125"	1.983"	1.733"	1.712"	1.582"	1.483"	1.417"	1.318"
匮	4.250"	1.920"	1.670"	1.650"	1.520"	1.420"	1.355"	1.255"
	4.375"*	1.858"	1.608"	1.587"	1.457"	1.358"	1.292"	1.193"
	4.500"	1.795"	1.545"	1.525"	1.395"	1.295"	1.230"	
	4.625"	1.733"	1.483"	1.462"	1.332"	1.233"		
	4.750"	1.670"	1.420"	1.400"	1.270"			

220

www.lunaticamshafts.com

HELPFUL CALCULATIONS

Engine Displacement

Engine displacement = bore x bore x stroke x 0.7854 x number of cylinders

Example: Cylinder bore diameter = 4.000"

Stroke length = 3.480" **Number of cylinders** = 8

Engine displacement = bore x bore x stroke x 0.7854 x number of cylinders.

Engine displacement = 4.000 x 4.000 x 3.480 x 0.7854 x 8

Engine displacement = 349.8486 cubic inches (round up to 350 cubic inches)

Stroke Length

Stroke length = engine displacement/(cylinder bore diameter x cylinder bore diameter x 0.7854 x number of cylinders)

Example: Engine displacement = 350 cubic inches

Cylinder bore diameter = 4.000" Number of cylinders = 8

Stroke length = engine displacement/(bore x bore x 0.7854 x

number of cylinders)

Stroke length = $349.8486/(4.000 \times 4.000 \times 0.7854 \times 8)$

Stroke length = 3.480"

CAMSHAFTS

BILLS

CRANKSHAFTS

221

Design (Inc. 1:800:455:5391/Tech (Inc. 901:355:055)

HELPFUL CALCULATIONS

Cylinder Bore Diameter

Cylinder bore diameter = square root of [engine displacement/(stroke x 0.7854 x number of cylinders)]

Example 1: Engine displacement = 350 cubic inches

Stroke length = 3.480" **Number of cylinders** = 8

Cylinder bore diameter = square root of [engine displacement/(stroke x

0.7854 x number of cylinders)]

Cylinder bore diameter= ([349.8486/(3.480 x 0.7854 x 8)]

Cylinder bore diameter= 4.000"

Example 2: NASCAR has a 358 cubic inch maximum engine size rule.

If we use a 3.480 stroke crank, what is the biggest bore allowed?

Engine displacement = 358 cubic inches

Stroke length = 3.480" **Number of cylinders** = 8

Cylinder bore diameter = square root of [engine displacement/

(stroke x 0.7854 x number of cylinders)]

Cylinder bore diameter = ([358/(3.480 x 0.7854 x 8)]

Cylinder bore diameter = 4.046"

Formula For Milling Pistons

(For 4032 material only)

Piston dome cc's to gram conversion: 1cc (Volume) = 2.8 grams (Weight)

This is a good way to remove excess dome without having to re-cc piston: Mill a small amount and re-weigh piston until total reduction is reached.

Example: A piston has 12.5cc effective dome volume. The desired

effective dome volume is 10.5cc.

To remove 2.0cc, cut 5.6 grams (2 x 2.8) from the piston dome.

222

www.lunalleamslaffs.com

HELPFUL CALCULATIONS

Compression Ratio

Compression ratio = (swept volume + total chamber volume)/total chamber volume

It is important that we understand two terms and their relationship to compression ratio: Swept Volume and Total Chamber Volume. Swept Volume is the area the piston travels through from bottom dead center to top dead center. Total Chamber Volume is all the area above the piston at top dead center. This would include the area above the piston in the cylinder block, the area of the compressed head gasket, the combustion chamber, the valve pocket, and the dome of the piston. The compression ratio is the relationship of the swept volume to the total chamber volume.

To start, we need to know the Swept Volume of one cylinder. The size of one cylinder is figured in cubic centimeters.

Swept volume (cc) = cylinder bore diameter (inches) x cylinder bore diameter (inches) x stroke (inches) x 12.8704

Example: Cylinder bore diameter = 4.000"

Stroke length = 3.480"

Swept volume = bore x bore x stroke x 12.8704 **Swept volume** = 4.000 x 4.000 x 3.480 x 12.8704

Swept volume = 716.62 cc

To get the Total Chamber Volume, several things will have to be taken into account:

Cylinder head combustion chamber volume: Find the number of cc in the cylinder head. **Piston valve relief pocket volume(s)**: Valve relief pockets add combustion chamber volume.

Head gasket volume: Head gasket thickness adds combustion chamber volume.

Deck clearance volume: If the piston is above or below the deck of the block, this must be taken

into account.

Total chamber volume = chamber volume + valve pocket volume(s) + head gasket volume +/- deck

clearance volume

Example: Cylinder head cc = 72.18 cc

Piston = flat top with two valve pockets that measure a total 4 cc **Head gasket** = 4.000" round and .038" thick when compressed **Deck clearance** = The piston at top dead center is 0.010" below the

surface of the deck

Gasket cc = bore x bore x compressed thickness x 12.8704

Gasket cc = $4.000 \times 4.000 \times .038 \times 12.8704$

Gasket cc = 7.83 cc.

Deck clearance volume = bore x bore x deck clearance x 12.8704 **Deck clearance volume** = 4.000 x 4.000 x 0.010 x 12.8704

Deck clearance volume = 2.059 cc

Total chamber volume = 72.18 + 7.83 + 4 + 2.059

Total chamber volume = 86.07 cc

CAMSHATIS

WALVE TRAIN

KICK

CRANKSHAFTS

223

Design Unce 1:000-465-5391/Toch Unce 901:365-0950

Other Calculations & SB Chevy Applications

HELPFUL CALCULATIONS

Now we are finally ready to calculate the compression ratio!

Examples: swept volume = 716.62 cc

total chamber volume = 86.07 cc

Compression ratio = (swept volume + total chamber volume)

/total chamber volume

Compression ratio = (716.16 + 86.07)/86.07

Compression ratio = 9.33:1

<u>Total Combustion Chamber Volume For a Specific Compression Ratio</u>

Cylinder head chamber volume = swept volume/(desired compression ratio - 1)

Examples: swept volume = 716.62 cc

desired compression ratio = 11:1

Cylinder head chamber volume = swept volume/(desired compression ratio - 1)

Cylinder head chamber volume = 716.62/(11:1 - 1)

Cylinder head chamber volume = 71.66cc

Cylinder Head Deck Machining To Reduce Total Chamber Volume

Cylinder head deck material removal = (current chamber volume - desired chamber volume) x deck material per cc

By experience, we have learned that a small block Chevy cylinder head will need 0.006" deck removed for each cc we want to reduce. An open chamber big block will take 0.005" per cc. These numbers will put us in the ballpark. Always check by "cc-ing" the cylinder head chamber volume for accuracy.

Example: Current chamber volume = 86.07 cc

Desired chamber volume = 71.66 cc Deck material removal per cc = 0.006"

Deck material to remove = (current chamber volume - desired

chamber volume) x deck material per cc

Deck material to remove = (86.07 - 71.66) x 0.006

Deck material to remove = 0.086"

224

www.lunaticamshafts.com

LUNATI PISTON APPLICATIONS

Small Block Chevrolet Flat Top Pistons - 4032 alloy

Descriptions:

Ring Grooves: 1/16" - 1/16" - 3/16" **Wrist Pins:** 2.500" x 0.927" 119.9 grams

Skirt: Slipper

* Pistons of a certain compression height work with many different stroke, rod length and block height combinations. Measurements listed are the most popular combinations and are listed for reference. Please see the piston technical information section to determine required compression height.

** Compression ratios are figured assuming a "zero deck" block and a 0.040" compressed head gasket. CAMSHAFTS WA

VALUE TRAIN

Part			Bore	Stroke*	Rod* Length	Deck* Height		Compression		Effective me Volume	Valve	
Number	DESCRIPTION	ALLOY	inches	inches	inches	inches	58	64	76	CC CC	Angle degrees	꿇
1.550" Co	mpression Hei	aht										PISTONS
1311J2S1	Flat Top	4032	4.004	3.500	5.700	9.000	11.3:1	10.5:1	9.2:1	-4	23	co.
1311J2S2	Flat Top	4032	4.020	3.500	5.700	9.000	11.4:1	10.5:1	9.2:1	-4	23	
1311J2S3	Flat Top	4032	4.030	3.500	5.700	9.000	11.4:1	10.6:1	9.3:1	-4	23	
1311J2S4	Flat Top	4032	4.035	3.500	5.700	9.000	11.4:1	10.6:1	9.3:1	-4	23	
1311J2S5	Flat Top	4032	4.040	3.500	5.700	9.000	11.4:1	10.6:1	9.3:1	-4	23	
1311J2S6	Flat Top	4032	4.060	3.500	5.700	9.000	11.5:1	10.7:1	9.4:1	-4	23	型
1.250" Co	mpression Hei	ght										03
1311D2S1	Flat Top	4032	4.004	3.500	6.000	9.000	11.3:1	10.5:1	9.2:1	-4	23	
1311D2S2	Flat Top	4032	4.020	3.500	6.000	9.000	11.4:1	10.5:1	9.2:1	-4	23	
1311D2S3	Flat Top	4032	4.030	3.500	6.000	9.000	11.4:1	10.6:1	9.3:1	-4	23	
1311D2S4	Flat Top	4032	4.035	3.500	6.000	9.000	11.4:1	10.6:1	9.3:1	-4	23	
1311D2S5	Flat Top	4032	4.040	3.500	6.000	9.000	11.4:1	10.6:1	9.3:1	-4	23	₽
1311D2S6	Flat Top	4032	4.060	3.500	6.000	9.000	11.5:1	10.7:1	9.4:1	-4	23	表
	-											X
1.420" Co	mpression Hei	ght										CRANKSHAFTS
1311G2S3	Flat Top	4032	4.030	3.750	5.700	8.995	12.1:1	11.3:1	9.9:1	-4	23	_ G
1311G2S5	Flat Top	4032	4.040	3.750	5.700	8.995	12.2:1	11.3:1	9.9:1	-4	23	
1311G2S6	Flat Top	4032	4.060	3.750	5.700	8.995	12.3:1	11.4:1	10.0:1	-4	23	
												里
1.120" Co	mpression Hei	ght										
1311B2S3	Flat Top	4032	4.030	3.750	6.000	8.995	12.1:1	11.3:1	9.9:1	-4	23	
1311B2S5	Flat Top	4032	4.040	3.750	6.000	8.995	12.2:1	11.3:1	9.9:1	-4	23	МТЗ
1311B2S6	Flat Top	4032	4.060	3.750	6.000	8.995	12.3:1	11.4:1	10.0:1	-4	23	Ø
										4		

225

Design (Inc. 1800-455-5391/Tech (Inc. 901-355-055)

Small Block Chevrolet Super Light Flat Top Pistons - 4032 alloy

Descriptions:

Ring Grooves: 1/16" - 1/16" - 3/16" **Wrist Pins:** 2.500" x 0.927" 99 grams

Skirt: Slipper

* Pistons of a certain compression height work with many different stroke, rod length and block height combinations. Measurements listed are the most popular combinations and are listed for reference. Please see the piston technical information section to determine required compression height.

** Compression ratios are figured assuming a "zero deck" block and a 0.040" compressed head gasket.

						Rod*	Deck*		Compressio			Valve	
	Part			Bore	Stroke*	•	Height		this "cc" ch		Dome Volume	Angle	App.
	Number	DESCRIPTION	ALLOY	inches	inches	inches	inches	58	64	76	cc	degrees	Mass
	1.550" Co	mpression Heig	ht										
	131GJ2S1	Super Light	4032	4.004	3.500	5.700	9.000	11.4:1	10.6:1	9.3:1	-3	23	399
	131GJ2S2	Super Light	4032	4.020	3.500	5.700	9.000	11.5:1	10.7:1	9.3:1	-3	23	399
ī	131GJ2S3	Super Light	4032	4.030	3.500	5.700	9.000	11.5:1	10.7:1	9.4:1	-3	23	399
	131GJ2S4	Super Light	4032	4.035	3.500	5.700	9.000	11.6:1	10.7:1	9.4:1	-3	23	399
	131GJ2S5	Super Light	4032	4.040	3.500	5.700	9.000	11.6:1	10.8:1	9.4:1	-3	23	399
	131GJ2S6	Super Light	4032	4.060	3.500	5.700	9.000	11.7:1	10.8:1	9.5:1	-3	23	399
	1.250" Co	mpression Heiç	ght										
	131GD2S1	Super Light	4032	4.004	3.500	6.000	9.000	11.4:1	10.6:1	9.3:1	-3	23	375
	131GD2S2	Super Light	4032	4.020	3.500	6.000	9.000	11.5:1	10.7:1	9.3:1	-3	23	375
	131GD2S3	Super Light	4032	4.030	3.500	6.000	9.000	11.5:1	10.7:1	9.4:1	-3	23	375
	131GD2S4	Super Light	4032	4.035	3.500	6.000	9.000	11.6:1	10.7:1	9.4:1	-3	23	375
	131GD2S5	Super Light	4032	4.040	3.500	6.000	9.000	11.6:1	10.8:1	9.4:1	-3	23	375
	131GD2S6	Super Light	4032	4.060	3.500	6.000	9.000	11.7:1	10.8:1	9.5:1	-3	23	375
	1.060" Co	mpression Heig	jht										
	131GT2S3	Super Light	4032	4.030	3.500	6.200	9.010	11.5:1	10.7:1	9.4:1	-3	23	350
극	131GT2S4	Super Light	4032	4.035	3.500	6.200	9.010	11.6:1	10.7:1	9.4:1	-3	23	350
	131GT2S5	Super Light	4032	4.040	3.500	6.200	9.010	11.6:1	10.8:1	9.4:1	-3	23	350
	1.000" Co	mpression Heig	ght										
	131GA2S3	Super Light	4032	4.030	3.500	6.250	9.000	11.5:1	10.7:1	9.4:1	-3	23	340
	131GA2S5	Super Light	4032	4.040	3.500	6.250	9.000	11.6:1	10.8:1	9.4:1	-3	23	340

226

www.funaticamshafts.com

Small Block Chevrolet Super Light Flat Top Pistons - 2618 alloy

Descriptions:

Ring Grooves: 1/16" - 1/16" - 3/16" **Wrist Pins:** 2.500" x 0.927" 99 grams

Skirt: Round

Pistons of a certain compression height work with many different stroke, rod length and block height combinations. Measurements listed are the most popular combinations and are listed for reference. Please see the piston technical information section to determine required compression height.

** Compression ratios are figured assuming a "zero deck" block and a 0.040" compressed head gasket.

	i da california de la facilita de la companya de l											
						Deck*		ompression			Valve	
Part			Bore	Stroke*	Length	Height	with th	is "cc" cha	mber	Dome Volume	Angle	App.
Number	DESCRIPTION	ALLOY	inches	inches	inches	inches	58	64	76	CC	degrees	Mass
1.550"" Co	ompression Hei	ght										
131CJ2S3	Super Light	2618	4.030	3.500	5.700	9.000	11.5:1	10.7:1	9.4:1	-3	23	420
131CJ2S6	Super Light	2618	4.060	3.500	5.700	9.000	11.7:1	10.8:1	9.5:1	-3	23	420
1.250" Co	mpression Heigl	nt										
131CD2S3	Super Light	2618	4.030	3.500	6.000	9.000	11.5:1	10.7:1	9.4:1	-3	23	375
131CD2S6	Super Light	2618	4.060	3.500	6.000	9.000	11.7:1	10.8:1	9.5:1	-3	23	375
1.000" Compression Height												
131CA2S3	Super Light	2618	4.030	3.500	6.250	9.000	11.5:1	10.7:1	9.4:1	-3	23	330
131CA2S6	Super Light	2618	4.060	3.500	6.250	9.000	11.7:1	10.8:1	9.5:1	-3	23	330

CAMSHAFTS

WALVE TRAIN

PSTORS

CRANKSHAFTS

PIGNE KITS

227

Design Character 1:000-455-5591/Tech Character 901-855-0950

Small Block Chevrolet Flat Top Pistons for Holley 20° Cyl. Heads - 4032 alloy

Descriptions:

Ring Grooves: 1/16" - 1/16"" - 3/16"" **Wrist Pins:** 2.500" x 0.927" 119.9 grams

Skirt: Slipper

- * Pistons of a certain compression height work with many different stroke, rod length and block height combinations. Measurements listed are the most popular combinations and are listed for reference. Please see the piston technical information section to determine required compression height.
- ** Compression ratios are figured assuming a "zero deck" block and a 0.040" compressed head gasket.

Part				Stroke*	,	Deck* Height				Effective Dome Volume	Valve Angle	
Number	DESCRIPTION	ALLOY	inches	inches	inches	inches	58	64	76	CC	degrees	
1.550" Compression Height												
13H1J2S1	Holley Flat Top	4032	4.004	3.500	5.700	9.000	11.3:1	10.5:1	9.2:1	-4	20	
13H1J2S2	Holley Flat Top	4032	4.020	3.500	5.700	9.000	11.4:1	10.5:1	9.2:1	-4	20	
13H1J2S3	Holley Flat Top	4032	4.030	3.500	5.700	9.000	11.4:1	10.6:1	9.3:1	-4	20	

Small Block Chevrolet Flat Top Pistons - 2618 alloy

Descriptions:

Ring Grooves: 1/16" - 1/16" - 3/16" **Wrist Pins:** 2.950" x 0.927" 141.9 grams

Skirt: Round

- Pistons of a certain compression height work with many different stroke, rod length and block height combinations. Measurements listed are the most popular combinations and are listed for reference. Please see the piston technical information section to determine required compression height.
- ** Compression ratios are figured assuming a "zero deck" block and a 0.040" compressed head gasket.

Part			Bore	Stroke*	Rod* Length	Deck* Height		Compressio his "cc" ch		* Effective Dome Volume	Valve Angle			
Number	DESCRIPTION	ALLOY	inches	inches	inches	inches	58	64	76	CC	degrees			
1.250"" Compression Height														
1317D5S3	Flat Top	2618	4.030	3.500	6.000	9.000	11.4:1	10.6:1	9.3:1	-4	23			
1317D5S5	Flat Top	2618	4.040	3.500	6.000	9.000	11.4:1	10.6:1	9.3:1	-4	23			
1317D5S6	Flat Top	2618	4.060	3.500	6.000	9.000	11.5:1	10.7:1	9.4:1	-4	23			
1.550" Con	npression Hei	ght												
1317J5S3	Flat Top	2618	4.030	3.500	5.700	9.000	11.4:1	10.6:1	9.3:1	-4	23			
1317J5S5	Flat Top	2618	4.040	3.500	5.700	9.000	11.4:1	10.6:1	9.3:1	-4	23			
1317J5S6	Flat Top	2618	4.060	3.500	5.700	9.000	11.5:1	10.7:1	9.4:1	-4	23			

228

www.funaticamshafts.com

Small Block Chevrolet Reverse Dome Pistons - 4032 alloy

Descriptions:

Ring Grooves: 1/16" - 1/16" - 3/16" **Wrist Pins:** 2.500" x 0.927" 119.9 grams

Skirt: Slipper

Pistons of a certain compression height work with many different stroke, rod length and block height combinations. Measurements listed are the most popular combinations and are listed for reference. Please see the piston technical information section to determine required compression height.

** Compression ratios are figured assuming a "zero deck" block and a 0.040" compressed head gasket.

- 100											
					Rod*	Deck*	Approx. C	compression	n Ratio**	Effective	Valve
Part			Bore	Stroke*	Length	Height	with the	nis "cc" cha	ımber	Dome Volume	Angle
Number	DESCRIPTION	ALLOY	inches	inches	inches	inches	58	64	76	CC	degrees
1.250" C	ompression Hei	ght									
1310D2S3	Reverse Dome	e 4032	4.030	3.500	6.000	9.000	10.5:1	9.8:1	8.7:1	-11	23
1310D2S5	Reverse Dome	e 4032	4.040	3.500	6.000	9.000	10.5:1	9.8:1	8.7:1	-11	23
1310D2S6	Reverse Dome	e 4032	4.060	3.500	6.000	9.000	10.6:1	9.9:1	8.8:1	-11	23
1.550" C	ompression Hei	ght									
1313J2S3	Reverse Dom	e 4032	4.030	3.500	5.700	9.000	10.7:1	10.0:1	8.8:1	-9.2	23
1313J2S5	Reverse Dom	e 4032	4.040	3.500	5.700	9.000	10.7:1	10.0:1	8.9:1	-9.2	23
1313J2S6	Reverse Dom	e 4032	4.060	3.500	5.700	9.000	10.8:1	10.1:1	8.9:1	-9.2	23

DID YOU KNOW?

Lunati makes pistons designed to fit Holley SysteMAX $^{\text{TM}}$ cylinder heads! See page 228

P/N 300-552-1

CAMSHAFTS

WALVE TRAIN

PISTURS

CRANKSHAFTS

PIGNE KITS

229

Design Character 1:800:455:5591/Tech Character 901:355:0550

Small Block Chevrolet Reverse Dome Pistons - 2618 alloy

Descriptions:

Ring Grooves: 1/16" - 1/16" - 3/16" **Wrist Pins:** 2.950"x 0.927" 141.9 grams

Skirt: Round

- * Pistons of a certain compression height work with many different stroke, rod length and block height combinations. Measurements listed are the most popular combinations and are listed for reference. Please see the piston technical information section to determine required compression height.
- ** Compression ratios are figured assuming a "zero deck" block and a 0.040" compressed head gasket.

Part			Bore	Stroke*	Rod* Length	Deck* Height		ompression onis "cc" cha		Effective Dome Volume	Valve Angle
Number	DESCRIPTION	ALLOY	inches	inches	inches	inches	58	64	76	CC	degrees
	ompression Heigh										
131AJ5S3	Reverse Dome Reverse Dome	2618	4.030	3.500	5.700	9.000	9.5:1	8.9:1	8.0:1	-20	23
131AJ5S6	Reverse Dome	2618	4.060	3.500	5.700	9.000	9.6:1	9.0:1	8.1:1	-20	23
	ompression Heigh Reverse Dome		4.030	3.500	6.000	9.000	9.5:1	8.9:1	8.0:1	-20	23

Small Block Chevrolet Reverse Dome Pistons - 2618 alloy

Descriptions:

Ring Grooves: 1/16" - 1/16" - 3/16" **Wrist Pins:** 2.950" x 0.927" 141.9 grams

Skirt: Round

- * Pistons of a certain compression height work with many different stroke, rod length and block height combinations. Measurements listed are the most popular combinations and are listed for reference. Please see the piston technical information section to determine required compression height.
- ** Compression ratios are figured assuming a "zero deck" block and a 0.040" compressed head gasket.

					Rod*	Deck*	Approx. Co	mpression	Ratio**	Effective	Valve
Part			Bore	Stroke*	Length	Height	with thi	s "cc" cha	mber	Dome Volume	Angle
Number	DESCRIPTION	ALLOY	inches	inches	inches	inches	58	64	76	CC	degrees
1.550" Co	ompression Heigl	nt									
131PJ5S3	Reverse Dome	2618	4.030	3.500	5.700	9.000	9.5:1	8.9:1	8.0:1	-20	18
131PJ5S6	Reverse Dome	2618	4.060	3.500	5.700	9.000	9.6:1	9.0:1	8.1:1	-20	18
1.250" Co	ompression Heigl	nt									
131PD5S3	Reverse Dome	2618	4.030	3.500	6.000	9.000	9.5:1	8.9:1	8.0:1	-20	18

230

www.lunaticamsirafis.com

Small Block Chevrolet Hollow Dome Pistons - 2618 alloy

Descriptions:

Ring Grooves: 1/16" - 1/16" - 3/16" Wrist Pins: 2.950" x 0.927" 141.9 grams

Skirt: Round

Pistons of a certain compression height work with many different stroke, rod length and block height combinations. Measurements listed are the most popular combinations and are listed for reference. Please see the piston technical information section to determine required compression

** Compression ratios are figured assuming a "zero deck" block and a 0.040" compressed head gasket.

						3					
Part Number	DESCRIPTION	ALLOY	Bore inches	Stroke*	Rod* Length inches	Deck* Height inches		Compress this "cc" o 64	ion Ratio** chamber 76	Effective Dome Volume cc	Valve Angle degrees
1.550" C	ompression Hei	ght									
1318J5S3	Hollow Dome	2618	4.030	3.500	5.700	9.000	14.6:1	13.2:1	11.2:1	12.5	23
1318J5S5	Hollow Dome	2618	4.040	3.500	5.700	9.000	14.6:1	13.3:1	11.2:1	12.5	23
1318J5S6	Hollow Dome	2618	4.060	3.500	5.700	9.000	14.8:1	13.4:1	11.3:1	12.5	23
1.250" Co	mpression Heig	ht									
1318D5S3	Hollow Dome	2618	4.030	3.500	6.000	9.000	14.6:1	13.2:1	11.2:1	12.5	23
1318D5S5	Hollow Dome	2618	4.040	3.500	6.000	9.000	14.6:1	13.3:1	11.2:1	12.5	23
1318D5S6	Hollow Dome	2618	4.060	3.500	6.000	9.000	14.8:1	13.4:1	11.3:1	12.5	23

DID YOU KNOW?

Lunati sells custom pistons built to your specifications! See page 266.

CAMSHAFTS

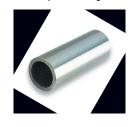
PICH KITS

Design (Inc. 1800-485-5891)/Tech (Inc. 901-885-095)

Small Block Chevrolet 18° Hollow Dome Pistons - 2618 alloy

Descriptions:

Ring Grooves: 1/16" - 1/16" - 3/16" **Wrist Pins:** 2.950" x 0.927" 141.9 grams


Skirt: Round

- * Pistons of a certain compression height work with many different stroke, rod length and block height combinations. Measurements listed are the most popular combinations and are listed for reference. Please see the piston technical information section to determine required compression height
- ** Compression ratios are figured assuming a "zero deck" block and a 0.040" compressed head gasket.

Part				Stroke*	Rod* Length	Deck* Height		Compressio this "cc" ch		Effective Dome Volume	Valve Angle
Number	DESCRIPTION	ALLOY	inches	inches	inches	inches	58	64	76	CC	degrees
1.250" Co	ompression Heig	ht									
131FD5S3	Hollow Dome	2618	4.030	3.500	6.000	9.000	14.5:1	13.1:1	11.1:1	12	18
131FD5S5	Hollow Dome	2618	4.040	3.500	6.000	9.000	14.5:1	13.2:1	11.2:1	12	18
131FD5S6	Hollow Dome	2618	4.060	3.500	6.000	9.000	14.6:1	13.3:1	11.2:1	12	18
1314D5S3	Hollow Dome	2618	4.030	3.500	6.000	9.000	13.1:1	12.0:1	10.3:1	5.8	18
1314D5S5	Hollow Dome	2618	4.040	3.500	6.000	9.000	13.1:1	12.0:1	10.4:1	5.8	18
1314D5S6	Hollow Dome	2618	4.060	3.500	6.000	9.000	13.2:1	12.1:1	10.4:1	5.8	18

Tool Steel Piston Pins are available sold separately. See page 265

232

www.lunaticamshafts.com

Small Block Chevrolet Hollow Dome Pistons - 4032 alloy

Descriptions:

Ring Grooves: 1/16" - 1/16" - 3/16" Wrist Pins: 2.950" x 0.927" 141.9 grams

Skirt: Slipper

Pistons of a certain compression height work with many different stroke, rod length and block height combinations. Measurements listed are the most popular combinations and are listed for reference. Please see the piston technical information section to determine required compression

Compression ratios are figured assuming a "zero deck" block and a 0.040"

CAMSHAFTS

E

	Samuel Same											ì
Part Number	DESCRIPTION	ALLOY	Bore inches	Stroke*	Rod* Length inches	Deck* Height inches		Compressio this "cc" ch 64		Effective Dome Volume cc	Valve Angle degrees	5
1.550" Co	ompression Heig	ht										
1312J2S2	Hollow Dome	4032	4.020	3.500	5.700	9.000	14.5:1	13.2:1	11.1:1	12.5	23	
1312J2S3	Hollow Dome	4032	4.030	3.500	5.700	9.000	14.6:1	13.2:1	11.2:1	12.5	23	_
1312J2S5	Hollow Dome	4032	4.040	3.500	5.700	9.000	14.6:1	13.3:1	11.2:1	12.5	23	- 7
1312J2S6	Hollow Dome	4032	4.060	3.500	5.700	9.000	14.8:1	13.4:1	11.3:1	12.5	23	6
1.420" Co	ompression Heig	ıht										701018
1312G2S3	Hollow Dome		4.030	3.750	5.700	8.995	15.6:1	14.1:1	11.9:1	12.5	23	
1312G2S6	Hollow Dome		4.060	3.750	5.700	8.995	15.7:1	14.3:1	12.1:1	12.5	23	
	ompression Heig			000	000	0.000						
1312D2S2	Hollow Dome		4.020	3.500	6.000	9.000	14.5:1	13.2:1	11.1:1	12.5	23	
1312D2S3	Hollow Dome		4.030	3.500	6.000	9.000	14.6:1	13.2:1	11.2:1	12.5	23	5
1312D2S4	Hollow Dome		4.035	3.500	6.000	9.000	14.6:1	13.2:1	11.2:1	12.5	23	•
1312D2S5	Hollow Dome	4032	4.040	3.500	6.000	9.000	14.6:1	13.3:1	11.2:1	12.5	23	
1312D2S6	Hollow Dome	4032	4.060	3.500	6.000	9.000	14.8:1	13.4:1	11.3:1	12.5	23	
1.213" Co	ompression Heig	ht										9
1312C2S3	Hollow Dome	4032	4.030	3.875	5.850	9.000	16.0:1	14.5:1	12.3:1	12.5	23	
1312CDS5	Hollow Dome	4032	4.040	3.875	5.850	9.000	16.1:1	14.6:1	12.3:1	12.5	23	
1312C2S6	Hollow Dome	4032	4.060	3.875	5.850	9.000	16.2:1	14.7:1	12.4:1	12.5	23	5
1.185″ Co	ompression Heig	ht										
131202S3	Hollow Dome	4032	4.030	3.625	6.000	8.998	15.1:1	13.7:1	11.5:1	12.5	23	
131202S5	Hollow Dome	4032	4.040	3.625	6.000	8.998	15.1:1	13.7:1	11.6:1	12.5	23	
131202S6	Hollow Dome	4032	4.060	3.625	6.000	8.998	15.2:1	13.8:1	11.7:1	12.5	23	_
1.120″ Co	ompression Heig	ht										
1312B2S3	Hollow Dome	4032	4.030	3.500	6.125	8.995	14.6:1	13.2:1	11.2:1	12.5	23	
1312B2S5	Hollow Dome	4032	4.040	3.500	6.125	8.995	14.6:1	13.3:1	11.2:1	12.5	23	2
1312B2S6	Hollow Dome	4032	4.060	3.500	6.125	8.995	14.8:1	13.4:1	11.3:1	12.5	23	6
												<u> </u>

Design (Inc. 1800-465-5391)/Tech (Inc. 901-365-095

CIDICIT

Small Block Chevrolet Pistons

Small Block Chevrolet NHRA Flat Top Pistons - 2618 alloy

Descriptions:

Ring Grooves: 5/64" - 5/64" - 3/16"

(131KJ2S6: 1/16" - 1/16" - 3/16")

Wrist Pins: 2.500" x 0.927" 119.9 grams

Skirt: Round

* Pistons of a certain compression height work with many different stroke, rod length and block height combinations. Measurements listed are the most popular combinations and are listed for reference. Please see the piston technical information section to determine required compression height.

** Compression ratios are figured assuming a "zero deck" block and a 0.040" compressed head gasket.

						U							
	Part Number	DESCRIPTION	ALLOY	Bore inches		Rod* Length inches	Deck* Height inches		ompressio nis "cc" ch 64		* Effective Dome Volume cc	Valve Angle degrees	App. Mass
					monos	monos	11101103		<u> </u>		00	uogi oos	mass
J	1.0/5" U	ompression Heigh	ii (327 (9)									
	135JL2S4	NHRAFlat Top	2618	4.035	3.250	5.700	9.000	10.8:1	10.0:1	8.8:1	-3	20	567
	135JL2S5	NHRA Flat Top	2618	4.040	3.250	5.700	9.000	10.8:1	10.1:1	8.8:1	-3	20	567
		-											
	1.550" C	ompression Heigh	nt (350	ci)									
					3.480	5.700	8.990	11.4:1	10.5:1	9.3:1	-4	20	567
	135KJ2S5	NHRA Flat Top NHRA Flat Top	2618	4.040	3.480	5.700	8.990	11.4:1	10.6:1	9.3:1	-4	20	567
		NHRAFlat Top			3.480			11.5:1	10.7:1	9.3:1	-4	20	567
		NHRAFlat Top			3.480	5.700	8.990	11.5:1	10.7:1	9.3:1	-4	20	528

Small Block Chevrolet NHRA LT-1 Flat Top Pistons - 2618 alloy

Descriptions:

Ring Grooves: 1/16" - 1/16" - 3/16" **Wrist Pins:** 2.500" x 0.927" 119.9 grams

Skirt: Round

- * Pistons of a certain compression height work with many different stroke, rod length and block height combinations. Measurements listed are the most popular combinations and are listed for reference. Please see the piston technical information section to determine required compression height.
- ** Compression ratios are figured assuming a "zero deck" block and a 0.040" compressed head gasket.

Part			Bore	Stroke*		Deck* Height				* Effective Dome Volume		App.
Number	DESCRIPTION	ALLOY	inches	inches	inches	inches	58	64	76	CC	degrees	Mass
1.550" Co	ompression Heigh	nt										
131HJ2S4	NHRAF/T LT-1	2618	4.035	3.480	5.700	8.990	11.4:1	10.5:1	9.3:1	-4	20	528
131HJ2S5	NHRA F/T LT-1	2618	4.040	3.480	5.700	8.990	11.4:1	10.6:1	9.3:1	-4	20	528
13AHJ2S6	NHRA F/T LT-1	2618	4.040	3.480	5.700	8.990	11.4:1	10.6:1	9.3:1	-4	20	528

234

www.lunaticamshafts.com

Small Block Chevrolet NHRA "170" Dish Pistons - 2618 alloy

Descriptions:

Ring Grooves: 1/16" - 1/16" - 3/16" **Wrist Pins:** 2.500" x 0.927" 119.9 grams

Pistons of a certain compression height work with many different stroke, rod length and block height combinations. Measurements listed are the most popular combinations and are listed for reference. Please see the piston technical information section to determine required compression height.

** Compression ratios are figured assuming a "zero deck" block and a 0.040"

compression head gasket.

Part Number	DESCRIPTION	ALLOY		Stroke*	Length	3				Oome Volume	Valve Angle degrees	App. Mass
1.550" Co	mpression Heig	ht										
131IJ2S3	NHRA Dish	2618	4.030	3.480	5.700	8.990	9.9:1	9.3:1	8.3:1	-15	21	565
131IJ2S4	NHRADish	2618	4.035	3.480	5.700	8.990	10.0:1	9.3:1	8.3:1	-15	21	565
131IJ2S5	NHRA Dish	2618	4.040	3.480	5.700	8.990	10.0:1	9.4:1	8.4:1	-15	21	565
131IJ2S6	NHRA Dish	2618	4.060	3.480	5.700	8.990	10.1:1	9.4:1	8.4:1	-15	21	565

Small Block Chevrolet Flat Top Pistons - 4032 alloy

Descriptions:

Ring Grooves: 1/16" - 1/16" - 3/16" Wrist Pins: 2.500" x 0.927" 119.9 grams

Skirt: Slipper

Pistons of a certain compression height work with many different stroke, rod length and block height combinations. Measurements listed are the most popular combinations and are listed for reference. Please see the piston technical information section to determine required compression height.

Compression ratios are figured assuming a "zero deck" block and a 0.040"

compressed head gasket.

Part			Bore	Stroke*	Rod* Length	Deck* Height		Compression this "cc" ch		* Effective Dome Volume	Valve Angle
Number	DESCRIPTION	ALLOY	inches	inches	inches	inches	58	64	76	CC	degrees
1.250" Com	pression Hei	ght									
131ZD2S3	Flat Top	4032	4.020	3.500	6.000	9.000	10.9:1	10.2:1	9.0:1	-7	20
131ZD2S4	Flat Top	4032	4.035	3.500	6.000	9.000	11.0:1	10.2:1	9.0:1	-7	20
131ZD2S5	Flat Top	4032	4.040	3.500	6.000	9.000	11.0:1	10.3:1	9.0:1	-7	20
131ZD2S6	Flat Top	4032	4.060	3.500	6.000	9.000	11.1:1	10.3:1	9.1:1	-7	20
1.120" Com	pression Hei	ght									
131ZB2S3	Flat Top	4032	4.030	3.500	6.125	8.995	11.0:1	10.2:1	9.0:1	-7	20
131ZB2S4	Flat Top	4032	4.035	3.500	6.125	8.995	11.0:1	10.2:1	9.0:1	-7	20
131ZB2S5	Flat Top	4032	4.040	3.500	6.125	8.995	11.0:1	10.3:1	9.0:1	-7	20
131ZB2S6	Flat Top	4032	4.060	3.500	6.125	8.995	11.1:1	10.3:1	9.1:1	-7	20
										_	

CAMSHAFTS

PICH KITS

Design Ame: 1:000-455-5591/Tech Ame: 001-855-095

Small Block Chevrolet Reverse Dome Pistons - 4032 alloy

Descriptions:

Ring Grooves: 1/16" - 1/16" - 3/16" **Wrist Pins:** 2.500" x 0.927" 119.9 grams

Skirt: Slipper

- * Pistons of a certain compression height work with many different stroke, rod length and block height combinations. Measurements listed are the most popular combinations and are listed for reference. Please see the piston technical information section to determine required compression height.
- ** Compression ratios are figured assuming a "zero deck" block and a 0.040" compressed head gasket.

DESCRIPTION	ALLOY	Bore inches	Stroke*	Rod* Length inches	Deck* Height inches					Valve Angle degrees			
1.120" Compression Height													
Reverse Dome	4032	4.030	3.500	6.125	8.995	9.5:1	8.9:1	8.0:1	-20	20			
Reverse Dome	4032	4.035	3.500	6.125	8.995	9.5:1	8.9:1	8.0:1	-20	20			
Reverse Dome	4032	4.040	3.500	6.125	8.995	9.5:1	9.0:1	8.0:1	-20	20			
Reverse Dome	4032	4.060	3.500	6.125	8.995	9.6:1	9.0:1	8.1:1	-20	20			
	Reverse Dome Reverse Dome Reverse Dome Reverse Dome	Reverse Dome 4032 Reverse Dome 4032 Reverse Dome 4032 Reverse Dome 4032	DESCRIPTION ALLOY inches Ompression Height Reverse Dome 4032 4.030 Reverse Dome 4032 4.035 Reverse Dome 4032 4.040	DESCRIPTION ALLOY inches inches Ompression Height Reverse Dome 4032 4.030 3.500 Reverse Dome 4032 4.035 3.500 Reverse Dome 4032 4.040 3.500	Bore Stroke* Length inches in	Bore Stroke* Length Height	Bore Stroke* Length Height with tender inches inches inches inches 58	Bore Stroke* Length Height with this "cc" che inches inches inches inches 58 64	Bore Stroke* Length Height with this "cc" chamber 58 64 76	Bore Stroke* Length Height with this "cc" chamber Dome Volume			

Small Block Chevrolet LS-1 Flat Top Pistons - 4032 alloy

Descriptions:

Ring Grooves: 1.5mm - 1.5mm - 3mm **Wrist Pins:** 2.500" x 0.927" 119.9 grams

Skirt: Slipper

- * Pistons of a certain compression height work with many different stroke, rod length and block height combinations. Measurements listed are the most popular combinations and are listed for reference. Please see the piston technical information section to determine required compression height.
- ** Compression ratios are figured assuming a "zero deck" block and a 0.040" compressed head gasket.

Part Number	DESCRIPTION	ALLOY		Stroke*	Length	Height		is "cc" ch	amber	Effective Dome Volume cc	Angle	
1.130"	Compression Heig	ht										
LS11	Flat Top LS-1	4032	3.898	4.000	6.125	9.240	12.7:1	11.7:1	10.2:1	-1	15	373

236

www.lunaliteamshaffs.com

Small Block Chevrolet LS-1 Dome Pistons - 4032 alloy

Descriptions:

Ring Grooves: 1.5mm - 1.5mm - 3mm **Wrist Pins:** 2.500" x 0.927" 119.9 grams

Skirt: Slipper

Pistons of a certain compression height work with many different stroke, rod length and block height combinations. Measurements listed are the most popular combinations and are listed for reference. Please see the piston technical information section to determine required compression height.

** Compression ratios are figured assuming a "zero deck" block and a 0.040" compressed head gasket.

					Rod*	Deck*	Approx. Con	pres	sion Ratio*	* Effective	Valve	
Part			Bore	Stroke*	Length	Height	with this	"cc"	chamber	Dome Volume	Angle	App.
Number	DESCRIPTION	ALLOY	inches	inches	inches	inches	58	64	76	CC	degrees	Mass
1 120" Co	mproceion Unia	ht										

1.130" Compression Height

LS12 Dome LS-1 4032 3.898 4.000 6.125 9.240 15.1:1 13.8:1 11.7:1 10.5 15 373

Small Block Chevrolet LS-1 NHRA Flat Top Pistons - 4032 alloy

Descriptions:

Ring Grooves: 1.5mm - 1.5mm - 3mm **Wrist Pins:** 2.500" x 0.927" 119.9 grams

Skirt: Slipper

- * Pistons of a certain compression height work with many different stroke, rod length and block height combinations. Measurements listed are the most popular combinations and are listed for reference. Please see the piston technical information section to determine required compression height
- ** Compression ratios are figured assuming a "zero deck" block and a 0.040" compressed head gasket.

					Rod*	Deck*	Approx. Com	ores	sion Ratio**	Effective	Valve	
Part			Bore	Stroke*	Length	Height	with this '	"cc"	chamber	Dome Volume	Angle	App.
Number	DESCRIPTION	ALLOY	inches	inches	inches	inches	58	64	76	CC	degrees	Mass
1 100												

1.130" Compression Height

LS1J NHRA F/T LS-1 4032 3.898 3.622 6.098 9.240 11.8:1 10.9:1 9.5:1 0 N/A 440

440

CAMSHAFTS

WALVE TRAIN

PSTOK

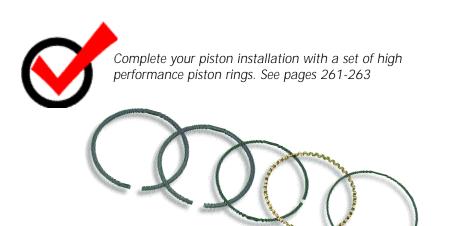
ROS

CRANKSHAFTS

Design Character 1:800:455:5391/Tech Character 901:855:0950

Small Block Chevrolet Solid Dome Pistons for Brodix Cyl. Heads - 2618 alloy

Descriptions:


Ring Grooves: 1/16" - 1/16" - 3/16" **Wrist Pins:** 2.950" x 0.927" 141.9 grams

Skirt: Round

Pistons of a certain compression height work with many different stroke, rod length and block height combinations. Measurements listed are the most popular combinations and are listed for reference. Please see the piston technical information section to determine required compression height.

** Compression ratios are figured assuming a "zero deck" block and a 0.040" compressed head gasket.

Part			Bore	Stroke*	Rod* Length	Deck* Height		Compressi this "cc" cl		Effective Dome Volume	Valve Angle
Number	DESCRIPTION	ALLOY	inches	inches	inches	inches	58	64	76	CC	degrees
1.250" C	ompression Heigl	ht									
1316D5S3	Brodix #12 S/D	2618	4.030	3.500	6.000	9.000	13.2:1	12.1:1	10.4:1	6.2	15
1316D5S5	Brodix #12 S/D	2618	4.040	3.500	6.000	9.000	13.2:1	12.1:1	10.4:1	6.2	15
1.000" C	ompression Heigl	ht									
1316A5S3	Brodix #12 S/D	2618	4.030	4.000	6.000	9.000	14.9:1	13.6:1	11.7:1	6.2	15
1316A5S5	Brodix #12 S/D	2618	4.040	4.000	6.000	9.000	15.0:1	13.7:1	11.7:1	6.2	15

238

www.linelleansleffs.com

Small Block Chevrolet (400 ci) Flat Top Pistons - 4032 alloy

Descriptions:

Ring Grooves: 1/16" - 1/16" - 3/16" **Wrist Pins:** 2.500" x 0.927" 119.9 grams

Skirt: Slipper

* Pistons of a certain compression height work with many different stroke, rod length and block height combinations. Measurements listed are the most popular combinations and are listed for reference. Please see the piston technical information section to determine required compression height.

height.

** Compression ratios are figured assuming a "zero deck" block and a 0.040" compressed head gasket.

												=
Part			Bore	Stroke*	Rod* Length	Deck* Height	with	. Compressi this "cc" c	hamber	Dome Volume	Valve Angle	TRAN
Number	DESCRIPTION	ALLOY	inches	inches	inches	inches	58	64	76	CC	degrees	
1.550" Con	npression Heig	aht										
1411J2S3	Flat Top	4032	4.155	3.500	5.700	9.000	12.0:1	11.1:1	9.7:1	-4	23	-0
1411J2S5	Flat Top	4032	4.165	3.500	5.700	9.000	12.0:1	11.2:1	9.8:1	-4	23	PISTONS
1.420" Con	npression Heig	ght										55
1411G2S3	Flat Top	4032	4.155	3.750	5.700	8.995	12.8:1	11.8:1	10.4:1	-4	23	
1411G2S5	Flat Top	4032	4.165	3.750	5.700	8.995	12.8:1	11.9:1	10.4:1	-4	23	
1411G2S6	Flat Top	4032	4.185	3.750	5.700	8.995	12.9:1	12.0:1	10.5:1	-4	23	
-												
1.250" Con	npression Heiç	ght										- 20
1411D2S3	Flat Top	4032	4.155	3.500	6.000	9.000	12.0:1	11.1:1	9.7:1	-4	23	RODS
1411D2S5	Flat Top	4032	4.165	3.500	6.000	9.000	12.0:1	11.2:1	9.8:1	-4	23	Ø
1411D2S6	Flat Top	4032	4.185	3.500	6.000	9.000	12.1:1	11.2:1	9.9:1	-4	23	
1.120" Con	npression Heiç	ght										
1411B2S3	Flat Top	4032	4.155	3.750	6.000	8.995	12.8:1	11.8:1	10.4:1	-4	23	-
1411B2S5	Flat Top	4032	4.165	3.750	6.000	8.995	12.8:1	11.9:1	10.4:1	-4	23	∣≨
												表
1.060" Con	npression Heig	ght										Crankshafts
1411T2S3	Flat Top	4032	4.155	3.875	6.000	8.998	13.1:1	12.2:1	10.7:1	-4	23	. 5
1411T2S5	Flat Top	4032	4.165	3.875	6.000	8.998	13.2:1	12.2:1	10.7:1	-4	23	ळ
1.000" Con	npression Heiç	ght										<u> </u>
1411A2S3	Flat Top	4032	4.155	4.000	6.000	9.000	13.5:1	12.6:1	11.0:1	-4	23	BIGNE
1411A2S5	Flat Top	4032	4.165	4.000	6.000	9.000	13.6:1	12.6:1	11.0:1	-4	23	- 2
												
												KITS
												UŠ

239

£

Small Block Chevrolet (400 ci) Flat Top Pistons - 2618 alloy

Descriptions:

Ring Grooves: 1/16" - 1/16" - 3/16" **Wrist Pins:** 2.950" x 0.927" 141.9 grams

Skirt: Round

Pistons of a certain compression height work with many different stroke, rod length and block height combinations. Measurements listed are the most popular combinations and are listed for reference. Please see the piston technical information section to determine required compression height.

** Compression ratios are figured assuming a "zero deck" block and a 0.040" compressed head gasket.

					Rod*	Deck*	Approx.	Compressi	on Ratio**	* Effective	Valve			
Part			Bore	Stroke*	Length	Height	with	this "cc" c	hamber	Dome Volume	Angle			
Number	DESCRIPTION	ALLOY	inches	inches	inches	inches	58	64	76	CC	degrees			
1.420" Compression Height														
1417G5S3	Flat Top	2618	4.155	3.750	5.700	8.995	12.8:1	11.8:1	10.4:1	-4	23			
1417G5S5	Flat Top	2618	4.165	3.750	5.700	8.995	12.8:1	11.9:1	10.4:1	-4	23			
1.120" Com	pression Heig	jht												
1417B5S3	Flat Top	2618	4.155	3.750	6.000	8.995	12.8:1	11.8:1	10.4:1	-4	23			
1417B5S5	Flat Top	2618	4.165	3.750	6.000	8.995	12.8:1	11.9:1	10.4:1	-4	23			

Small Block Chevrolet (400 ci) Flat Top Pistons - 2618 alloy

Descriptions:

Ring Grooves: 1/16" - 1/16" - 3/16" **Wrist Pins:** 2.950" x 0.927" 141.9 grams

Skirt Round

* Pistons of a certain compression height work with many different stroke, rod length and block height combinations. Measurements listed are the most popular combinations and are listed for reference. Please see the piston technical information section to determine required compression height

** Compression ratios are figured assuming a "zero deck" block and a 0.040" compressed head gasket.

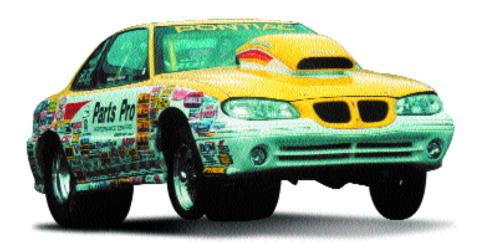
						Rod*	Deck*		. Compress			Valve
	Part			Bore	Stroke*	Length	Height	with	this "cc" (chamber	Dome Volume	Angle
	Number	DESCRIPTION	ALLOY	inches	inches	inches	inches	58	64	76	CC	degrees
]	1.120" Com	pression Heig	jht									
	141EB5S3	Flat Top	2618	4.155	3.750	6.000	8.995	12.8:1	11.8:1	10.4:1	-4	18
	141EB5S5	Flat Top	2618	4.165	3.750	6.000	8.995	12.8:1	11.9:1	10.4:1	-4	18
	1.000" Com	pression Heig	jht									
	141EA5S3	Flat Top	2618	4.155	4.000	6.000	9.000	13.5:1	12.6:1	11.0:1	-4	18
	141EA5S5	Flat Top	2618	4.165	4.000	6.000	9.000	13.6:1	12.6:1	11.0:1	-4	18
П												

240

www.lunaliteamshaffs.com

Small Block Chevrolet (400 ci) Reverse dome Pistons - 4032 alloy

Descriptions:


Ring Grooves: 1/16" - 1/16" - 3/16" **Wrist Pins:** 2.950" x 0.927" 141.9 grams

Skirt: Slipper

* Pistons of a certain compression height work with many different stroke, rod length and block height combinations. Measurements listed are the most popular combinations and are listed for reference. Please see the piston technical information section to determine required compression height.

** Compression ratios are figured assuming a "zero deck" block and a 0.040" compressed head gasket.

Part Number	DESCRIPTION	ALLOY	Bore inches	Stroke* inches	Rod* Length inches	Deck* Height inches		Compression this "cc" ch 64		Effective Dome Volume cc	Valve Angle degrees
1.420" C	ompression Heig	ht									
1413G2S3	Reverse Dome	4032	4.155	3.750	5.700	8.995	12.0:1	11.2:1	9.9:1	-9.2	23
1413G2S5	Reverse Dome	4032	4.165	3.750	5.700	8.995	12.0:1	11.2:1	9.9:1	-9.2	23
1.120" Co	ompression Heig	ht									
1410B2S3	Reverse Dome	4032	4.155	3.750	6.000	8.995	11.7:1	10.9:1	9.7:1	-11	23
1410B2S5	Reverse Dome	4032	4.165	3.750	6.000	8.995	11.7:1	11.0:1	9.7:1	-11	23

CAMSHAFTS

VALVE TRAIN

RSTOR

召员

CRANKSHAFTS

PIGNE KITS

241

Design Ama 1600/4555591/Tech Ama 901/855-0550

LIDIONS

Small Block Chevrolet Pistons

Small Block Chevrolet (400 ci) Hollow Dome Pistons - 4032 alloy

Descriptions:

Ring Grooves: 1/16" - 1/16" - 3/16" **Wrist Pins:** 2.500" x 0.927" 119.9 grams

Skirt: Slipper

Pistons of a certain compression height work with many different stroke, rod length and block height combinations. Measurements listed are the most popular combinations and are listed for reference. Please see the piston technical information section to determine required compression height.

** Compression ratios are figured assuming a "zero deck" block and a 0.040" compressed head gasket.

				a	Rod*	Deck*			ion Ratio**		Valve
Part	DECORPTION	A1 L034	Bore	Stroke*	Length	Height		this "cc" c		Dome Volume	Angle
Number	DESCRIPTION	ALLOY	inches	inches	inches	inches	58	64	76	CC	degrees
1.550" Co	mpression Heig	ht									
141VJ2S3	Hollow Dome	4032	4.155	3.500	5.700	9.000	14.8:1	13.5:1	11.5:1	10.5	23
141VJ2S5	Hollow Dome	4032	4.165	3.500	5.700	9.000	14.8:1	13.5:1	11.5:1	10.5	23
1 420" Co	mpression Heig	ht									
141VG2S3	Hollow Dome		4.155	3.750	5.700	8.995	15.8:1	14.4:1	12.2:1	10.5	23
141VG2S5	Hollow Dome	4032	4.165	3.750	5.700	8.995	15.8:1	14.4:1	12.2:1	10.5	23
141VG2S6	Hollow Dome	4032	4.185	3.750	5.700	8.995	16.0:1	14.5:1	12.3:1	10.5	23
4.050%.0											
	mpression Heig										
141VD2S3	Hollow Dome		4.155	3.800	5.850	9.000	16.0:1	14.5:1	12.4:1	10.5	23
141VD2S5	Hollow Dome	4032	4.165	3.480	6.000	8.990	14.8:1	13.4:1	11.4:1	10.5	23
1.120" Co	mpression Heig	ht									
141VB2S3	Hollow Dome		4.155	3.750	6.000	8.995	15.8:1	14.4:1	12.2:1	10.5	23
141VB2S5	Hollow Dome	4032	4.165	3.750	6.000	8.995	15.8:1	14.4:1	12.2:1	10.5	23
1.060″.Co	mnroccion Hoia	ht									
	mpression Heig		4.455	0.075	0.000	0.000	40.0.4	44.0.4	40.0:4	40.5	00
141VT2S3	Hollow Dome		4.155	3.875	6.000	8.998	16.3:1	14.8:1	12.6:1	10.5	23
141VT2S5	Hollow Dome	4032	4.165	3.875	6.000	8.998	16.3:1	14.9:1	12.6:1	10.5	23
1.000" Co	mpression Heig	ht									
141VA2S3	Hollow Dome	4032	4.155	4.000	6.000	9.000	16.8:1	15.2:1	12.9:1	10.5	23
141VA2S5	Hollow Dome	4032	4.165	4.000	6.000	9.000	16.8:1	15.3:1	13.0:1	10.5	23

242

www.lunaticamshafts.com

Small Block Chevrolet (400 ci) Hollow Dome Pistons - 2618 alloy

Descriptions:

Ring Grooves: 1/16" - 1/16" - 3/16" **Wrist Pins:** 2.950" x 0.927" 141.9 grams

Skirt: Round

Pistons of a certain compression height work with many different stroke, rod length and block height combinations. Measurements listed are the most popular combinations and are listed for reference. Please see the piston technical information section to determine required compression height.

** Compression ratios are figured assuming a "zero deck" block and a 0.040" compressed head gasket.

Part Number	DESCRIPTION	ALLOY	Bore inches	Stroke*	Rod* Length inches	Deck* Height inches		Compressi this "cc" c 64		Effective Dome Volume cc	Valve Angle degrees
1.420" Co	mpression Heig	ht									
141WG5S3	Hollow Dome	2618	4.155	3.750	5.700	8.995	15.8:1	14.4:1	12.2:1	10.5	23
141WG5S5	Hollow Dome	2618	4.165	3.750	5.700	8.995	15.8:1	14.4:1	12.2:1	10.5	23
1.120" Co	mpression Heig	ht									
141WB5S3	Hollow Dome	2618	4.155	3.750	6.000	8.995	15.8:1	14.4:1	12.2:1	10.5	23
141WB5S5	Hollow Dome	2618	4.165	3.750	6.000	8.995	15.8:1	14.4:1	12.2:1	10.5	23

CAMSHAFTS

WALVE TRAIN

PS: UNS

CRANKSHAFTS

PIGNE KITS

2/12

Design Character 1800-455-5591/Tech Character 901-355-0550

Small Block Chevrolet (400 ci) Solid Dome Pistons - 4032 alloy

Descriptions:

Ring Grooves: 1/16" - 1/16" - 3/16" **Wrist Pins:** 2.950" x 0.927" 141.9 grams

Skirt: Slipper

* Pistons of a certain compression height work with many different stroke, rod length and block height combinations. Measurements listed are the most popular combinations and are listed for reference. Please see the piston technical information section to determine required compression height.

** Compression ratios are figured assuming a "zero deck" block and a 0.040" compressed head gasket.

Part	per DESCRIPTION ALLOY			Stroke*	Rod* Length	Deck* Height		Compressi this "cc" c		Effective Dome Volume	Valve Angle
Number	DESCRIPTION	ALLOY	inches	inches	inches	inches	58	64	76	CC	degrees
1.420" Co											
1412G2S3	Solid Dome	4032	4.155	3.750	5.700	8.995	15.8:1	14.4:1	12.2:1	10.5	23
1412G2S5	Solid Dome	4032	4.165	3.750	5.700	8.995	15.8:1	14.4:1	12.2:1	10.5	23
1412G2S6	Solid Dome	4032	4.185	3.750	5.700	8.995	16.0:1	14.5:1	12.3:1	10.5	23
1.120" Co	mpression Heig	ht									
1412B2S3	Solid Dome	4032	4.155	3.750	6.000	8.995	15.8:1	14.4:1	12.2:1	10.5	23
1412B2S5	Solid Dome	4032	4.165	3.750	6.000	8.995	15.8:1	14.4:1	12.2:1	10.5	23

Small Block Chevrolet (400 ci) Solid Dome Pistons - 2618 alloy

Descriptions:

Ring Grooves: 1/16" - 1/16" - 3/16" **Wrist Pins:** 2.500" x 0.927" 119.9 grams

Skirt: Round

- * Pistons of a certain compression height work with many different stroke, rod length and block height combinations. Measurements listed are the most popular combinations and are listed for reference. Please see the piston technical information section to determine required compression height.
- ** Compression ratios are figured assuming a "zero deck" block and a 0.040" compressed head gasket.

Part			Bore	Stroke*	Rod* Length	Deck* Height		Compression this "cc" c		Effective Dome Volume	Valve Angle
Number	DESCRIPTION	ALLOY	inches	inches	inches	inches	58	64	76	CC	degrees
1.420" Co	mpression Heig	ght									
1418G5S3	Solid Dome	2618	4.155	3.750	5.700	8.995	15.8:1	14.4:1	12.2:1	10.5	23
1418G5S5	Solid Dome	2618	4.165	3.750	5.700	8.995	15.8:1	14.4:1	12.2:1	10.5	23
1.120" Co	mpression Heig	ght									
1418B5S3	Solid Dome	2618	4.155	3.750	6.000	8.995	15.8:1	14.4:1	12.2:1	10.5	23
1418B5S5	Solid Dome	2618	4.165	3.750	6.000	8.995	15.8:1	14.4:1	12.2:1	10.5	23

244

www.lunaticamshafts.com

Small Block Chevrolet (400 ci) Solid Dome Pistons for Brodix Cyl. Heads - 2618 alloy

CAMSHAFTS

Descriptions:

Ring Grooves: 1/16" - 1/16" - 3/16" Wrist Pins: 2.950" x 0.927" 141.9 grams

Skirt: Round

- Pistons of a certain compression height work with many different stroke, rod length and block height combinations. Measurements listed are the most popular combinations and are listed for reference. Please see the piston technical information section to determine required compression
- ** Compression ratios are figured assuming a "zero deck" block and a 0.040" compressed head gasket.

Part Number	DESCRIPTION	ALLOY	Bore inches	Stroke* inches	Rod* Length inches	Deck* Height inches		Compression This "cc" cha 64		Effective Dome Volume cc	Valve e Angle degrees	PISTONS
1.250" Co	ompression Heigh	nt										
1419D5S3	Brodix #12 S/D	2618	4.155	3.500	6.000	9.000	12.6:1	11.7:1	10.2:1	0	15	
1419D5S5	Brodix #12 S/D	2618	4.165	3.500	6.000	9.000	12.7:1	11.7:1	10.2:1	0	15	
1419B5S6 1419B5S5	ompression Heigl Brodix #12 S/ D Brodix #12 S/ D ompression Heigl	2618 2618	4.155 4.165	3.750 3.750	6.000 6.000	8.995 8.995	13.5:1 13.5:1	12.4:1 12.5:1	10.8:1 10.9:1	0 0	15 15	RODS
	Brodix #12 S/ D		4.129	3.540	6.125	9.000	12.6:1	11.7:1	10.2:1	0	15	_
1419E5SA	Brodix #12 S/ D	2618	4.135	3.540	6.125	9.000	12.7:1	11.7:1	10.2:1	0	15	물
1419E5SC	Brodix #12 S/ D	2618	4.140	3.540	6.125	9.000	12.7:1	11.7:1	10.2:1	0	15	CRANKSHAFTS
1.000" C	ompression Heigl	nt										菱
1419A5S3	Brodix #12 S/ D	2618	4.155	4.000	6.000	9.000	14.3:1	13.2:1	11.5:1	0	15	∄
1419A5S5	Brodix #12 S/ D	2618	4.165	4.000	6.000	9.000	14.3:1	13.2:1	11.5:1	0	15	

Design (Inc. 1800-455-559) / Tech (Inc. 901-855-955)

Small Block Chevrolet (400 ci) Solid Dome Pistons for Buick Cyl. Heads - 2618 alloy

Descriptions:

Ring Grooves: 1/16" - 1/16" - 3/16" **Wrist Pins:** 2.950" x 0.927"" 141.9 grams

Skirt: Round

- Pistons of a certain compression height work with many different stroke, rod length and block height combinations. Measurements listed are the most popular combinations and are listed for reference. Please see the piston technical information section to determine required compression height.
- ** Compression ratios are figured assuming a "zero deck" block and a 0.040" compressed head gasket.

Part Number	DESCRIPTION	ALLOY	Bore inches	Stroke*	Rod* Length inches	Deck* Height inches				Effective Dome Volume cc	Valve Angle degrees
	npression Heig			monos	monos	monos		01	70	30	uogi oos
141SD5S3	Buick S/D	2618	4.155	3.500	6.000	9.000	12.6:1	11.7:1	10.2:1	0	10
141SD5S5	Buick S/D	2618	4.165	3.500	6.000	9.000	12.7:1	11.7:1	10.2:1	0	10
1.000" Con	npression Heig	ht									
141SA5S3	Buick S/D	2618	4.155	4.000	6.000	9.000	14.3:1	13.2:1	11.5:1	0	10
141SA5S5	Buick S/D	2618	4.165	4.000	6.000	9.000	14.3:1	13.2:1	11.5:1	0	10

Big Block Chevrolet Flat Top Pistons - 2618 alloy

Descriptions:

Ring Grooves: 1/16" - 1/16" - 3/16" **Wrist Pins:** 2.930" x 0.990" 151.1 grams

Skirt: Round

- * Pistons of a certain compression height work with many different stroke, rod length and block height combinations. Measurements listed are the most popular combinations and are listed for reference. Please see the piston technical information section to determine required compression height.
- ** Compression ratios are figured assuming a "zero deck" block and a 0.040" compressed head gasket.

Part			Bore	Stroke*	Rod* Length	Deck* Height		Compression this "cc" cl		Effective Dome Volume
Number	DESCRIPTION	ALLOY	inches	inches	inches	inches	110	118	124	CC
1.645" Cor	mpression Heig	ght								
1511K4S3	Flat Top	2618	4.280	4.000	6.135	9.780	8.7:1	8.3:1	7.9:1	-2.5
1511K4S6	Flat Top	2618	4.310	4.000	6.135	9.780	8.8:1	8.4:1	8.0:1	-2.5
1511K4SB	Flat Top	2618	4.375	4.000	6.135	9.780	9.1:1	8.6:1	8.2:1	-2.5
1611K4S0	Flat Top	2618	4.500	4.000	6.135	9.780	9.5:1	9.0:1	8.6:1	-2.5
1611K4S3	Flat Top	2618	4.530	4.000	6.135	9.780	9.6:1	9.1:1	8.7:1	-2.5

246

www.lunatteamshafts.com

Big Block Chevrolet Flat Top Pistons - 2618 alloy

Descriptions:

Ring Grooves: 1/16" - 1/16" - 3/16" **Wrist Pins:** 2.930" x 0.990" 151.1 grams

Skirt: Round

- * Pistons of a certain compression height work with many different stroke, rod length and block height combinations. Measurements listed are the most popular combinations and are listed for reference. Please see the piston technical information section to determine required compression height.
- ** Compression ratios are figured assuming a "zero deck" block and a 0.040" compressed head gasket.

					9					
Part	DECODIDATION	ALLOV	Bore	Stroke*	Rod* Length	Deck* Height	with	Compressi this "cc" c	hamber	Dome Volume
Number	DESCRIPTION	ALLOY	inches	inches	inches	inches	110	118	124	CC
1.520" Con	npression Hei	ght								
15111FS6	Flat Top	2618	4.310	4.250	6.135	9.780	9.3:1	8.8:1	8.5:1	-2.5
151114SB	Flat Top	2618	4.375	4.250	6.135	9.780	9.6:1	9.0:1	8.7:1	-2.5
161114S0	Flat Top	2618	4.500	4.250	6.135	9.780	10.0:1	9.5:1	9.1:1	-2.5
1.395" Con	npression Heig	ght								
1511F4S6	Flat Top	2618	4.310	4.500	6.135	9.780	16.4:1	9.3:1	8.9:1	-2.5
1611F4S0	Flat Top	2618	4.500	4.500	6.135	9.780	17.5:1	10.0:1	9.6:1	-2.5
1 270" Con	npression Hei	ah t								
1511U4S6	Flat Top	2618	4.310	4.750	6.535	10.180	17.2:1	9.7:1	9.3:1	-2.5
1611U4S0	Flat Top	2618	4.500	4.750	6.535	10.180	18.5:1	10.5:1	10.0:1	-2.5

Big Block Chevrolet Reverse Dome Pistons - 2618 alloy

Descriptions:

Ring Grooves: 1/16" - 1/16" - 3/16" **Wrist Pins:** 2.930" x 0.990" 151.1 grams

Skirt: Round

- * Pistons of a certain compression height work with many different stroke, rod length and block height combinations. Measurements listed are the most popular combinations and are listed for reference. Please see the piston technical information section to determine required compression height.
- ** Compression ratios are figured assuming a "zero deck" block and a 0.040" compression head gasket.

Part Number	DESCRIPTION	ALLOY	Bore inches	Stroke*	Rod* Length inches	Deck* Height inches		Compressi this "cc" c 118		Effective Dome Volum cc	е
1.645" C	ompression Heigl	ht									
1510K4S6	Reverse Dome	2618	4.310	4.000	6.135	9.780	8.1:1	7.7:1	7.4:1	-15	
1610K4S0	Reverse Dome	2618	4.500	4.000	6.135	9.780	8.7:1	8.3:1	8.0:1	-15	
151014S6	Reverse Dome	2618	4.310	4.000	6.135	9.780	8.1:1	7.7:1	7.4:1	-15	
161014S0	Reverse Dome	2618	4.500	4.000	6.135	9.780	8.7:1	8.3:1	8.0:1	-15	

Design Character 1800-455-5591/Tech Character 901-355-0950

CAMSHAFTS

WALVE TRAIN

PSTOKS

CRANKSHAFTS

ENGINE KITS

Big Block Chevrolet Pistons

Big Block Chevrolet Mini Dome (Closed Chamber) Pistons - 2618 alloy

Descriptions:

Ring Grooves: 1/16" - 1/16" - 3/16" **Wrist Pins:** 2.930" x 0.990" 151.1 grams

Skirt: Round

* Pistons of a certain compression height work with many different stroke, rod length and block height combinations. Measurements listed are the most popular combinations and are listed for reference. Please see the piston technical information section to determine required compression height.

height.

** Compression ratios are figured assuming a "zero deck" block and a 0.040" compressed head gasket.

Part Number	DESCRIPTION	ALLOY	Bore inches	Stroke*	Rod* Length inches	Deck* Height inches		Compressio his "cc" ch 118		Effective ome Volume cc
1.760" C	ompression Heigh	t								
1515M4S3	M/Dome/Closed Chamber Only	2618	4.280	3.760	6.135	9.775	10.1:1	9.4:1	8.9:1	21.5
1515M4S6	M/Dome/Closed Chamber Only	2618	4.310	3.760	6.135	9.775	10.2:1	9.5:1	9.0:1	21.5
1.645" C	ompression Heigh	t								
	M/Dome/Closed Chamber Only		4.280	4.000	6.135	9.780	10.6:1	9.9:1	9.4:1	21.5
1515K4S6	M/Dome/Closed Chamber Only	2618	4.310	4.000	6.135	9.780	10.8:1	10.0:1	9.5:1	21.5
1515K4SB	M/Dome/Closed Chamber Only	2618	4.375	4.000	6.135	9.780	11.0:1	10.3:1	9.8:1	21.5
1615K4S0	M/Dome/Closed	2618	4.500	4.000	6.135	9.780	11.5:1	10.7:1	10.2:1	21.5

248

Big Block Chevrolet Mini Dome (Open Chamber) Pistons - 2618 alloy

Descriptions:

Ring Grooves: 1/16" - 1/16" - 3/16" **Wrist Pins:** 2.930" x 0.990" 151.1 grams

Skirt: Round

* Pistons of a certain compression height work with many different stroke, rod length and block height combinations. Measurements listed are the most popular combinations and are listed for reference. Please see the piston technical information section to determine required compression height.

height.

** Compression ratios are figured assuming a "zero deck" block and a 0.040" compressed head gasket.

Part	DECODINE OU		Bore	Stroke*	Rod* Length	Deck* Height	with t	Compression	amber	Dome Volume
Number	DESCRIPTION	ALLOY	inches	inches	inches	inches	110	118	124	CC
1.760" Cd	ompression Heig	ht								
1514M4S3	M/Dome/Open Chamber Only	2618	4.280	3.760	6.135	9.775	11.1:1	10.3:1	9.7:1	32
1514M4S6	M/Dome/Open Chamber Only	2618	4.310	3.760	6.135	9.775	11.3:1	10.4:1	9.9:1	32
1.645" Co	ompression Heigl	ht								
1514K4S6	M/Dome/Open Chamber Only	2618	4.310	4.000	6.135	9.780	11.9:1	11.0:1	10.4:1	32
1514K4SB	M/Dome/Open Chamber Only	2618	4.375	4.000	6.135	9.780	12.2:1	11.3:1	10.7:1	32
1614K4S0	M/Dome/Open Chamber Only	2618	4.500	4.000	6.135	9.780	12.8:1	11.8:1	11.2:1	32

CAMSHAFTS

WALVE TRAIN

PSTUS

CRANKSHAFTS

PICHE KITS

249

Design Cine: 1:800:455:5391/Tech Cine: 901:355:0550

Big Block Chevrolet Pistons

Big Block Chevrolet Dome (Open Chamber) Pistons - 2618 alloy

Descriptions:

Ring Grooves: 1/16" - 1/16" - 3/16" **Wrist Pins:** 2.930" x 0.990" 151.1 grams

Skirt: Round

* Pistons of a certain compression height work with many different stroke, rod length and block height combinations. Measurements listed are the most popular combinations and are listed for reference. Please see the piston technical information section to determine required compression height.

** Compression ratios are figured assuming a "zero deck" block and a 0.040" compressed head gasket.

Part			Bore	Stroke*	Rod* Length	Deck* Height		Compressio his "cc" ch		Effective Dome Volume
Number	DESCRIPTION	ALLOY	inches	inches	inches	inches	110	118	124	CC
1.645" Co	ompression Heig	ht								
1512K4S3	Dome/Open Chamber Only	2618	4.280	4.000	6.135	9.780	14.2:1	12.9:1	12.0:1	48
1512K4S6	Dome/Open Chamber Only		4.310	4.000	6.135	9.780	14.4:1	13.0:1	12.2:1	48
1512K4SB	Dome/Open Chamber Only		4.375	4.000	6.135	9.780	14.7:1	13.3:1	12.5:1	48
1612K4S0	Dome/Open Chamber Only	2618	4.500	4.000	6.135	9.780	14.8:1	13.5:1	12.7:1	48
1612K4S3	Dome/Open		4.530	4.000	6.135	9.780	15.0:1	13.6:1	12.8:1	48
1.520" Co	ompression Heig	ht								
151214\$6	Dome/Open Chamber Only		4.310	4.250	6.135	9.780	15.2:1	13.8:1	12.9:1	48
151214SB	Dome/Open Chamber Only		4.375	4.250	6.135	9.780	15.6:1	14.7:1	13.2:1	48
161214S0	Dome/Open	2618	4.500	4.250	6.135	9.780	15.7:1	14.3:1	13.4:1	48
1.395" Co	ompression Heig	ht								
1512F4S6	Dome/Open Chamber Only	2618	4.310	4.500	6.135	9.780	16.0:1	14.5:1	13.6:1	48
1612F4S0	Dome/Open Chamber Only	2618	4.500	4.500	6.135	9.780	16.5:1	15.1:1	14.1:1	48
1 270%		h.								
	ompression Heig		4.040	4.050	0.005	0.700	45.0.4	40.0.4	10.0.1	40
1512U4S6	Dome/Open Chamber Only		4.310	4.250	6.385	9.780	15.2:1	13.8:1	12.9:1	48
1612U4S0	Dome/Open Chamber Only	2618	4.500	4.250	6.385	9.780	15.7:1	14.3:1	13.4:1	48

250

Big Block Chevrolet (502 ci) Mini Dome Pistons - 2618 alloy

Descriptions:

Ring Grooves: 1/16" - 1/16" - 3/16" **Wrist Pins:** 2.930" x 0.990" 151.1 grams

Skirt: Round

* Pistons of a certain compression height work with many different stroke, rod length and block height combinations. Measurements listed are the most popular combinations and are listed for reference. Please see the piston technical information section to determine required compression height.

** Compression ratios are figured assuming a "zero deck" block and a 0.040" compressed head gasket.

Part		Bore	Stroke*	Rod* Length	Deck* Height	with	Compressio this "cc" ch	amber	Effective Dome Volume
Number	DESCRIPTION A	LLOY inches	inches	inches	inches	110	118	124	СС
1.645" C	ompression Height								
1716K4SA	M/Dome/Open 2 Chamber Only	618 4.476	4.000	6.135	9.780	9.9:1	9.4:1	9.0:1	5
1616K4S0	M/Dome/Open 2 Chamber Only	618 4.500	4.000	6.135	9.780	10.0:1	9.4:1	9.1:1	5
1.520" C	ompression Height								
171614SA	M/Dome/Open 2 Chamber Only	618 4.476	4.250	6.535	10.180	10.5:1	9.9:1	9.5:1	5
161614S0	M/Dome/Open 2 Chamber Only	618 4.500	4.250	6.535	10.180	10.6:1	10.0:1	9.6:1	5

CAMSHAFTS

WALVE TRAIN

PSTURS

CRANKSHAFTS

PIGNE KITS

251

Design Ame 1600-455-5591/Toch Ame 001-855-0550

CIDICIT

Small Block Ford Pistons

Small Block Ford Flat Top Pistons - 2618 alloy

Descriptions:

Ring Grooves: 1/16" - 1/16" - 3/16" **Wrist Pins:** 2.500" x 0.912" 112.8 grams

Skirt: Round

- * Pistons of a certain compression height work with many different stroke, rod length and block height combinations. Measurements listed are the most popular combinations and are listed for reference. Please see the piston technical information section to determine required compression height
- ** Compression ratios are figured assuming a "zero deck" block and a 0.040" compressed head gasket.

Part Number	DESCRIPTION	ALLOY			•	Height	with	this "cc" c	hamber	Effective Dome Volume cc	
1.600" Con	npression Heiç	jht									<u>.</u>
2211V7S3	Flat Top	2618	4.030	3.000	5.090	8.190	10.2:1	9.6:1	9.1:1	-4.5	20

Small Block Ford Flat Top Pistons - 2618 alloy

Descriptions:

Ring Grooves: 1/16" - 1/16" - 3/16" **Wrist Pins:** 2.500" x 0.927" 111.9 grams

Skirt: Round

- * Pistons of a certain compression height work with many different stroke, rod length and block height combinations. Measurements listed are the most popular combinations and are listed for reference. Please see the piston technical information section to determine required compression height.
- ** Compression ratios are figured assuming a "zero deck" block and a 0.040" compressed head gasket.

Part					Length	Height	with	this "cc" cl	hamber	Dome Volume	
Number	DESCRIPTION	ALLOY	inches	inches	inches	inches	55	60	65	CC	degrees
1.078" Com	pression Heig	jht									
221Q82S3	Flat Top	2618	4.030	3.425	5.400	8.190	11.5:1	10.8:1	10.2:1	-4.5	20

252

Small Block Ford Dome Pistons - 2618 alloy

Descriptions:

Ring Grooves: 1/16" - 1/16" - 3/16" **Wrist Pins:** 2.500" x 0.912" 112.8 grams (221R82 series: 2.500" x 0.927" 119.9 grams

Skirt: Round

* Pistons of a certain compression height work with many different stroke, rod length and block height combinations. Measurements listed are the most popular combinations and are listed for reference. Please see the piston technical information section to determine required compression height.

** Compression ratios are figured assuming a "zero deck" block and a 0.040" compressed head gasket.

Part Number	DESCRIPTION	ALLOY	Bore inches	Stroke*	3	Deck* Height inches		. Compress this "cc" (60		Effective Dome Volume cc	Valve Angle degrees
1.600" Com	pression Heig	ht									
2212V7S3	Dome	2618	4.030	3.000	5.090	8.190	13.3:1	12.2:1	11.3:1	12.5	20
2212V7S5	Dome	2618	4.040	3.000	5.090	8.190	13.4:1	12.3:1	11.3:1	12.5	20
2212V7S6	Dome	2618	4.060	3.000	5.090	8.190	13.5:1	12.4:1	11.4:1	12.5	20
1.078" Com	pression Heig	ht									
221R82S3	Dome	2618	4.030	3.425	5.400	8.190	14.4:1	13.3:1	12.3:1	12.5	20

CAMSHAFTS

WELVE TRAIN

PO IUNO

CRANKSHAFTS

POR KITS

253

Design Character 1:000-455-5591/Tech Character 901-855-0950

Small Block Ford Pistons

Small Block Ford Flat Top Pistons for Holley Cyl. Heads - 2618 alloy

Descriptions:

Ring Grooves: 1/16" - 1/16" - 3/16" **Wrist Pins:** 2.500" x 0.927" 119.9 grams (221TV7 series: 2.500" x 0.912" 112.8 grams)

Skirt: Round

- * Pistons of a certain compression height work with many different stroke, rod length and block height combinations. Measurements listed are the most popular combinations and are listed for reference. Please see the piston technical information section to determine required compression height.
- ** Compression ratios are figured assuming a "zero deck" block and a 0.040" compressed head gasket.

Part Number	DESCRIPTION	ALLOY	Bore inches	Stroke*	Rod* Length inches	Deck* Height inches	Approx. Compression Ratio* with this "cc" chamber 63	* Effective Dome Volume cc	Valve Angle degrees
	ompression Heigl Holley Flat Top		4.030	3.000	5.090	8.190	10.8:1	-4.5	17
	ompression Heigl Holley Flat Top		4.030	3.425	5.400	8.190	10.3:1	-4.5	17

DID YOU KNOW?

Lunati make pistons designed to fit Holley SysteMAX $^{\text{TM}}$ cylinder heads!

P/N 300-573 P/N 300-574 P/N 300-575 P/N 300-551-2

254

Small Block Ford Reverse Dome Pistons for Holley Cyl. Heads - 2618 alloy

Descriptions:

Ring Grooves: 1/16" - 1/16" - 3/16" **Wrist Pins:** 2.500" x 0.912" 112.8 grams (221S82-series 2.500" x 0.927" 119.9 grams)

Skirt: Round

* Pistons of a certain compression height work with many different stroke, rod length and block height combinations. Measurements listed are the most popular combinations and are listed for reference. Please see the piston technical information section to determine required compression height.

** Compression ratios are figured assuming a "zero deck" block and a 0.040" compressed head gasket.

				001111011000	oa moda ga	onot:			
Part Number	DESCRIPTION	ALLOY	Bore inches	Stroke*	Rod* Length inches	Deck* Height inches	Approx. Compression Ratio** with this "cc" chamber 63	Effective Dome Volume cc	Valve Angle degrees
1.600" C	ompression Heig	ht							
	Holley R/Dome		4.030	3.000	5.090	8.190	8.8:1	-9.2	17
221SV7S4	Holley R/Dome	2618	4.035	3.000	5.090	8.190	8.8:1	-9.2	17
221SV7S5	Holley R/Dome	2618	4.040	3.000	5.090	8.190	8.8:1	-9.2	17
1.078" C	ompression Heig	ht							
221S82S3	Holley R/Dome	2618	4.030	3.425	5.400	8.190	9.9:1	-9.2	17
221S82S4	Holley R/Dome	2618	4.035	3.425	5.400	8.190	9.9:1	-9.2	17
221\$82\$5	Holley R/Dome	2618	4.040	3.425	5.400	8.190	9.9:1	-9.2	17

Small Block Ford Reverse Dome Pistons - 2618 alloy

Descriptions:

Ring Grooves: 1/16" - 1/16" - 3/16" **Wrist Pins:** 2.500" x 0.927" 119.9 grams

Skirt: Round

- * Pistons of a certain compression height work with many different stroke, rod length and block height combinations. Measurements listed are the most popular combinations and are listed for reference. Please see the piston technical information section to determine required compression height.
- ** Compression ratios are figured assuming a "zero deck" block and a 0.040" compressed head gasket.

					Rod*	Deck*	Approx. Co	mpress	sion Ratio**	Effective	Valve
Part			Bore	Stroke*	Length	Height	with thi	s "cc"	chamber	Dome Volume	Angle
Number	DESCRIPTION	ALLOY	inches	inches	inches	inches	55	60	65	CC	degrees

1.078" Compression Height

221P82S3 Reverse Dome 2618 4.030 3.425 5.400 8.190 9.6:1 9.1:1 8.7:1 -20 20

rees 20

CAMSHAFTS

VALVE TRAIN

PSTONS

CRANKSHAFTS

PAGINE KITS

Small & Big Block Ford Pistons

Small Block Ford (351W) Flat Top Pistons - 2618 alloy

Descriptions:

Ring Grooves: 1/16" - 1/16" - 3/16" **Wrist Pins:** 2.500" x 0.912" 112.8 grams

Skirt: Round

* Pistons of a certain compression height work with many different stroke, rod length and block height combinations. Measurements listed are the most popular combinations and are listed for reference. Please see the piston technical information section to determine required compression height.

** Compression ratios are figured assuming a "zero deck" block and a 0.040"

compressed head gasket.

Part				Stroke*	3	Deck* Height	with		namber	Effective Dome Volume	3
Number	DESCRIPTION	ALLOY	inches	inches	inches	inches	55	60	65	CC	degrees
1.769" Com	pression Heig	jht									
2411W7S3	Flat Top	2618	4.030	3.500	5.954	9.473	11.8:1	11.0:1	10.4:1	-4.5	20
2411W7S5	Flat Top	2618	4.040	3.500	5.954	9.473	11.8:1	11.1:1	10.4:1	-4.5	20
2411W7S6	Flat Top	2618	4.060	3.500	5.954	9.473	11.9:1	11.2:1	10.5:1	-4.5	20

Small Block Ford (351W) Dome Pistons - 2618 alloy

Descriptions:

Ring Grooves: 1/16" - 1/16" - 3/16" **Wrist Pins:** 2.500" x 0.912" 112.8 grams

Skirt: Round

- * Pistons of a certain compression height work with many different stroke, rod length and block height combinations. Measurements listed are the most popular combinations and are listed for reference. Please see the piston technical information section to determine required compression height.
- ** Compression ratios are figured assuming a "zero deck" block and a 0.040" compressed head gasket.

Part			Bore	Stroke*	Rod* Length	Deck* Height		Compression Compression		Effective Dome Volum	
Number	DESCRIPTION	ALLOY	inches	inches	inches	inches	55	60	65	CC	degrees
1.769" Com	pression Hei	ght									
2412W7S3	Dome	2618	4.030	3.500	5.954	9.473	15.4:1	14.1:1	13.0:1	12.5	20
2412W7S4	Dome	2618	4.035	3.500	5.954	9.473	15.4:1	14.1:1	13.0:1	12.5	20
2412W7S5	Dome	2618	4.040	3.500	5.954	9.473	15.4:1	14.2:1	13.1:1	12.5	20
2412W7S6	Dome	2618	4.060	3.500	5.954	9.473	15.6:1	14.3:1	13.2:1	12.5	20

256

www.lunaticamsirafis.com

Big Block Ford (429 ci - 460 ci) Flat Top Pistons - 2618 alloy

Descriptions:

Ring Grooves: 1/16" - 1/16" - 3/16" **Wrist Pins:** 2.930" x 0.990" 151.1 grams

Skirt: Round

* Pistons of a certain compression height work with many different stroke, rod length and block height combinations. Measurements listed are the most popular combinations and are listed for reference. Please see the piston technical information section to determine required compression height.

** Compression ratios are figured assuming a "zero deck" block and a 0.040" compressed head gasket.

Part Number	DESCRIPTION	ALLOY	Bore inches	Stroke*	Rod* Length inches	Deck* Height inches	Approx. Comp with this "o 75	ression Ratio* cc" chamber 95	* Effective Dome Volume cc
1.756" Con	npression Heig	ght							
2817Y4S3	Flat Top	2618	4.390	3.850	6.605	10.286	11.7:1	9.8:1	-4
1.675" Con	npression Hei	ght							
2811L4S8	Flat Top	2618	4.440	4.140	6.535	10.280	12.8:1	10.6:1	-4
1.516" Con	npression Hei	ght							
281194S8	Flat Top	2618	4.440	4.140	6.700	10.286	12.8:1	10.6:1	-4

CAMSHAFTS

VALVE TRAIN

PSIUNS

CRANKSHAFTS

PIGNE KITS

257

Design Ame 1600-455-5591/Tech Ame 001655-0550

Special Order Pistons & Ring Tech. Info.

SPECIAL ORDER PISTON DESIGNS

351 Cleveland Flat Top

351 Cleveland Reverse Dome

360 Chrysler Flat Top

360 Chrysler Dish

440 Chrysler Flat Top

440 Chrysler Dish

302-351W Reverse Dome

460 Ford Dome

400 Chevy NHRA Dish

Pontiac Big Chief Dome

Holley SysteMAX[™] Dome

Brodix Canted Valve Dome

Ford Twisted Wedge Flat

Ford Twisted Wedge Dish

NHRA 351W

258

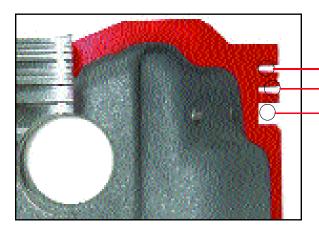
www.lunalileamshafts.com

PISTON RING TECHNICAL INFORMATION

Lunati offers the finest quality piston ring sets available on the market today. Each series contains the best combination of rings necessary to seal your performance engine for maximum efficiency and performance. If you're serious about racing, then this is the ring set for you.

CAMSHAFTS

PSTOK


召员

CRANKSHAFTS

3 basic ring set combinations are available from Lunati:

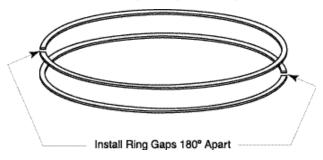
- "R" (Racer) Series: consisting of a plasma moly top ring, a ductile iron second ring, and a low tension oil control ring.
- "P" (Pro) Series: consisting of a barrel faced plasma moly top ring, a ductile iron second ring and a low tension oil ring.
- "T" (Pro Series w/Total Seal® 2nd ring) Series: consisting of a barrel faced plasma moly top ring, a Total Seal® second ring and a low tension oil control ring.

The part number prefix (i.e. P, T, R) denotes the combination, the next digit (i.e. 1, 2, 3, 4) denotes the thickness and combination of the rings in the set, and the suffix (i.e. 4035) denotes the size of the bore. (Rings for individual pistons will have "1" behind the part number (i.e. P14005I).

First Ring Groove Second Ring Groove Oil Ring Groove

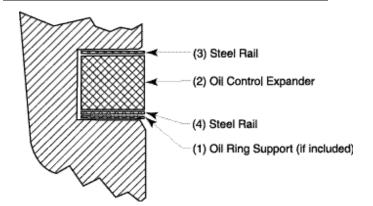
<u> 259</u>

Design (Inc. 1800-455-5391/Tech (Inc. 901-355-095)



Piston Ring Tech Info & Applications

PISTON RING TECHNICAL INFORMATION


Installation Tips

- 1. Minimum gap clearance is 0.004" per inch of cylinder diameter for top rings. Example: 4.000" bore X .004" = .016" minimum top ring gap clearance. Minimum gap clearance for second ring is .003" per inch of cylinder diameter. (.012" for 4.00" bore.) (NORMALLY ASPIRATED ENGINES ONLY)
- 2. When filing end gaps, make sure the ends are squared. Remove any burrs from ring ends to prevent scratching the cylinder walls. We strongly recommend a ring filing tool for this operation.
- 3. Top groove (bright faced plasma moly) and second groove (dull faced ductile iron) compression rings: Install rings with dots facing up. If there are no dots, install with bevel facing up. Rings without dots or bevels can be installed either side up. Install with gaps approximately 180 degrees apart.
- 4. If Total Seal® 2nd ring is being used, install the machined (step) ring first, with groove facing down, then install the thin rail below the machined (step) ring. Place gaps 180 degrees apart.

5. Oil ring groove: If there is an oil ring support included with your pistons due to short compression height, install the support first on the bottom of the oil ring groove. Place the oil control expander in the groove . Install the bottom rail between the expander and the oil ring support (if used). Butt ends of expander above either pin hole, with gaps on rails approximately 1" to the right and left of the spacer ends. Install the remaining rail into the groove above the expander. Make sure the oil ring support gap is 90 degrees away from the pin hole.

OIL RING COMPONENT INSTALLATION SEQUENCE

260

PISTON RING APPLICATIONS

Lunati offers the finest quality piston ring sets available on the market today. Each series contains the best combination of rings necessary to seal your performance engine for maximum efficiency and performance. If you're serious about racing, then this is the ring set for you.

				The second second	Mil. Select.			
			BORE ———— RING SIZE (inches) ————					
PART NUMB	ER DESCRIPTION	FILE FIT	inches	FIRST RING	SECOND RING	OIL RING	GRAMS	
Racer Serie	es 1/16" - 1/16" - 3/16	"						
R14030	Moly Top Ring	NO	4.030	1/16	1/16	3/16	45	
R14040	Moly Top Ring	NO	4.040	1/16	1/16	3/16	45	
R14060	Moly Top Ring	NO	4.060	1/16	1/16	3/16	46	
R14155	Moly Top Ring	NO	4.155	1/16	1/16	3/16	48	
R14165	Moly Top Ring	NO	4.165	1/16	1/16	3/16	48	
R14185	Moly Top Ring	NO	4.185	1/16	1/16	3/16	49	
Pro Series	1/16" - 1/16" - 3/16"							
P14005	Plasma Moly Top Ring	YES	4.000	1/16	1/16	3/16	45	
P14010 I	Plasma Moly Top Ring	YES	4.005	1/16	1/16	3/16	45	

Pro Serie	es 1/16" - 1/16" - 3/16"						
P14005	Plasma Moly Top Ring	YES	4.000	1/16	1/16	3/16	45
P14010	Plasma Moly Top Ring	YES	4.005	1/16	1/16	3/16	45
P14025	Plasma Moly Top Ring	YES	4.020	1/16	1/16	3/16	45
P14035	Plasma Moly Top Ring	YES	4.030	1/16	1/16	3/16	45
P14045	Plasma Moly Top Ring	YES	4.040	1/16	1/16	3/16	46
P14065	Plasma Moly Top Ring	YES	4.060	1/16	1/16	3/16	46
P14130	Plasma Moly Top Ring	YES	4.125	1/16	1/16	3/16	47
P14135	Plasma Moly Top Ring	YES	4.130	1/16	1/16	3/16	47
P14150	Plasma Moly Top Ring	YES	4.145	1/16	1/16	3/16	48
P14160	Plasma Moly Top Ring	YES	4.155	1/16	1/16	3/16	48
P14170	Plasma Moly Top Ring	YES	4.165	1/16	1/16	3/16	48
P14285	Plasma Moly Top Ring	YES	4.280	1/16	1/16	3/16	51
P14315	Plasma Moly Top Ring	YES	4.310	1/16	1/16	3/16	51
P14325	Plasma Moly Top Ring	YES	4.320	1/16	1/16	3/16	52
P14355	Plasma Moly Top Ring	YES	4.350	1/16	1/16	3/16	52
P14380	Plasma Moly Top Ring	YES	4.375	1/16	1/16	3/16	53
P14445	Plasma Moly Top Ring	YES	4.440	1/16	1/16	3/16	53
P14505	Plasma Moly Top Ring	YES	4.500	1/16	1/16	3/16	54
P14535	Plasma Moly Top Ring	YES	4.530	1/16	1/16	3/16	54
P14565	Plasma Moly Top Ring	YES	4.560	1/16	1/16	3/16	55
P146075	Plasma Moly Top Ring	YES	4.600	1/16	1/16	3/16	56
P14630	Plasma Moly Top Ring	YES	4.625	1/16	1/16	3/16	60

CAMSHAFTS

VALVE TRAIN

KIOK

CRANKSHAFTS

261

Design Character 1:000-455-5591/Tech Character 901-855-0050

Piston Ring Applications

PISTON RING APPLICATIONS

			BORE	——— R	RING SIZE (inches	s)———	MASS
PART NUI	MBER DESCRIPTION	FILE FIT	inches	FIRST RING	SECOND RING	OIL RING	GRAMS
				ī			
Pro Seri	es 0.043" - 0.043" - 3mi	n (for cust	om pistons)				
P24005	Plasma Moly Top Ring	yES	4.000	0.043	0.043	3 mm	27
P24010	Plasma Moly Top Ring		4.005	0.043	0.043	3 mm	28
P24015	Plasma Moly Top Ring		4.010	0.043	0.043	3 mm	28
P24020	Plasma Moly Top Ring	YES	4.015	0.043	0.043	3 mm	28
P24025	Plasma Moly Top Ring	YES	4.020	0.043	0.043	3 mm	28
P24030	Plasma Moly Top Ring	YES	4.025	0.043	0.043	3 mm	28
P24035	Plasma Moly Top Ring	YES	4.030	0.043	0.043	3 mm	28
P24045	Plasma Moly Top Ring	YES	4.040	0.043	0.043	3 mm	28
P24065	Plasma Moly Top Ring	YES	4.060	0.043	0.043	3 mm	28
P24130	Plasma Moly Top Ring	YES	4.125	0.043	0.043	3 mm	28
P24135	Plasma Moly Top Ring	YES	4.130	0.043	0.043	3 mm	29
P24140	Plasma Moly Top Ring	YES	4.135	0.043	0.043	3 mm	29

Pro Series 0.043" - 1/16" - 3/16" (for custom pistons)

P34005	Plasma Moly Top Ring	YES	4.000	0.043	1/16	3/16	38
P34010	Plasma Moly Top Ring	YES	4.005	0.043	1/16	3/16	38
P34015	Plasma Moly Top Ring	YES	4.010	0.043	1/16	3/16	38
P34020	Plasma Moly Top Ring	YES	4.015	0.043	1/16	3/16	38
P34025	Plasma Moly Top Ring	YES	4.020	0.043	1/16	3/16	38
P34030	Plasma Moly Top Ring	YES	4.025	0.043	1/16	3/16	38
P34035	Plasma Moly Top Ring	YES	4.030	0.043	1/16	3/16	39
P34045	Plasma Moly Top Ring	YES	4.040	0.043	1/16	3/16	39
P34065	Plasma Moly Top Ring	YES	4.060	0.043	1/16	3/16	39
P34130	Plasma Moly Top Ring	YES	4.125	0.043	1/16	3/16	40
P34135	Plasma Moly Top Ring	YES	4.130	0.043	1/16	3/16	40
P34140	Plasma Moly Top Ring	YES	4.135	0.043	1/16	3/16	40
P34160	Plasma Moly Top Ring	YES	4.155	0.043	1/16	3/16	40

262

PISTON RING APPLICATIONS

			BORE		ING SIZE (inches		MASS	
PART NUN	MBER DESCRIPTION	FILE FIT	inches	FIRST RING	SECOND RING	OIL RING	GRAMS	XAM
TOTAL SE	AL® 2nd RING SETS 1/16" ·	1/16" - 3	/16″					CAMSHAFTS
T14005	Plasma Moly top ring Total Seal® 2nd ring	YES	4.000	1/16	1/16	3/16	45	8
T14010	Plasma Moly top ring Total Seal® 2nd ring	YES	4.005	1/16	1/16	3/16	45	«
T14025	Plasma Moly top ring Total Seal® 2nd ring	YES	4.020	1/16	1/16	3/16	45	N.
T14035	Plasma Moly top ring Total Seal® 2nd ring	YES	4.030	1/16	1/16	3/16	45	WALVE TRAIN
T14045	Plasma Moly top ring Total Seal® 2nd ring	YES	4.040	1/16	1/16	3/16	46	
T14050	Plasma Moly top ring Total Seal® 2nd ring	YES	4.045	1/16	1/16	3/16	46	_
T14065	Plasma Moly top ring Total Seal® 2nd ring	YES	4.060	1/16	1/16	3/16	46	PISTONS
T14130	Plasma Moly top ring Total Seal® 2nd ring	YES	4.125	1/16	1/16	3/16	48	菱
T14135	Plasma Moly top ring Total Seal® 2nd ring	YES	4.130	1/16	1/16	3/16	48	
T14160	Plasma Moly top ring Total Seal® 2nd ring	YES	4.155	1/16	1/16	3/16	48	
T14170	Plasma Moly top ring Total Seal® 2nd ring	YES	4.165	1/16	1/16	3/16	48	RODS
T14285	Plasma Moly top ring Total Seal® 2nd ring	YES	4.280	1/16	1/16	3/16	50	Ø
T14315	Plasma Moly top ring Total Seal® 2nd ring	YES	4.310	1/16	1/16	3/16	51	
T14325	Plasma Moly top ring Total Seal® 2nd ring	YES	4.320	1/16	1/16	3/16	52	윮
T14355	Plasma Moly top ring Total Seal® 2nd ring	YES	4.350	1/16	1/16	3/16	52	N (S)
T14380	Plasma Moly top ring Total Seal® 2nd ring	YES	4.375	1/16	1/16	3/16	53	CRANKSHAFTS

BIGNE KITS

263

Groove Lock Spacer & Piston Pins

GROOVE LOCK SPACER

The Lunati Groove Lock spacer is designed too prevent the oil ring groove spacer from turning in the groove, which causes the oil ring package to collapse. When the non-rotating Groove Lock Spacer is properly installed, the oil ring pack will not allow the tab to move past the wrist pin bore. Finally, the problem of collapsed oil rings due to groove lock spacer rotation has been solved! The Groove Lock Spacer only applies to pistons with short compression heights, where the pin bore extends up into the oil ring groove. Spacers are included with pistons.

PART NUMBER	ENGINE FAMILY	BORE inches	MASS grams
LT73840SR	305 Chevy	3.810	8
LT73875SR	305 Chevy	3.875	9
LT74000SR	350 Chevy	4.000	9
LT74030SR	350 Chevy	4.030	9
LT74060SR	350 Chevy	4.060	9
LT74080SR	350 Chevy	4.080	9

264

PISTON PINS

Lunati piston pins are machined to exacting tolerances from the finest materials. Tool steel piston pins are available (and recommended) for extreme duty racing applications where reliability and durability are of the upmost concern.

CAMSHAFTS

WALVE TRAIN

ž

PSTORS

CRANKSHAFTS

BOK KITS

PART NUMBER	DESCRIPTION	PIN DIAMETER inches	PIN LENGTH inches	PIN WALL inches	WEIGHT grams
High Performa	nce Piston Pins				
LT91010PP	Small Block Chevrolet	0.927	2.500	0.155"	119.6
LT91011PP	Small Block Chevrolet	0.927	2.500	0.120"	98.9
LT91012PP	"Small Block Chevrolet 0.003"" oversize"	0.930	2.500	0.155"	121.6
LT91013PP	Small Block Chevrolet	0.927	2.950	0.155"	141.5
LT91014PP	Small Block Chevrolet	0.927	2.950	0.120"	117.2
LT91030PP	Big Block Chevrolet	0.990	2.930	0.155"	156.7
LT91040PP	Small Block Ford	0.912	2.500	0.155"	113.1
LT91045PP	Big Block Ford	1.040	2.930	0.185"	188
LT91050PP	A Mopar	0.984	2.500	0.150"	126
LT91055PP	B Mopar	1.094	3.125	0.215"	235
Tool Steel Pisto	on Pins				
LT91020PP	Small Block Chevrolet	0.927	2.500	0.120"	99
LT91021PP	Small Block Chevrolet	0.927	2.950	0.120"	112.3
LT91035PP	Big Block Chevrolet	0.990	2.930	0.120"	122

•

CNDICIT

Custom Piston Recommendation Form

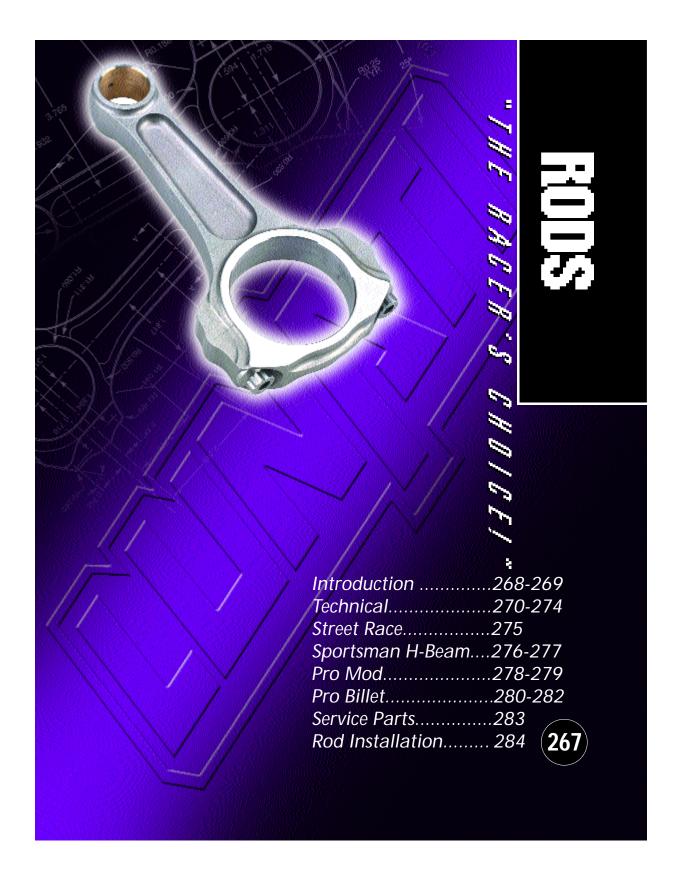
CUSTOM PISTON RECOMMENDATION FORM

All custom piston sets are designed and manufactured per specific engine specifications and must be accompanied by a signed order sheet and a fifty percent down payment. Under no circumstances are custom pistons returnable for credit, exchange, or refund unless the piston fails to meet the custom order specifications. Examine our list of stocked pistons before deciding to order custom sets. We are con stantly expanding our product line and may have the products that you need in stock.

Memphis, TN 38118-7403 Phone 901-365-0950 - Fax 901-795-9411

Name		
Date		
Shipping Address	City	State
Zip		
Daytime Phone	_ Night Phone	
Fax		
Special Shipping Instructions		
Custom Piston Specifications		
Bore Size Compression Hei	ight Boss Width	
Brand of Pins		
Pin Diameter Pin Lock Type	Pin Offset Pi	ston Weight Needed
Pin Length		
Brand of Rings Top Ring Thic	kness Radial Depth	2nd Ring Thickness _
Radial Depth		
Oil Ring Thickness Radial Depth		
Exhaust Pocket Diameter	Exhaust Pocket Depth	
Valve Diameter		
Intake Pocket Diameter	Intake Pocket Depth	
Valve Diameter		
Valve Angle - Intake E		
Piston Quantity V-Motor - Left		
Piston Quantity - Inline Motor	Cylinder	_
Number Racing Type	Fuel Type	Nitrous
Forced Induction		
Crankshaft Stroke Type of	Rods Rod Length	l
Engine		
Piston Material Type 2618	4032	

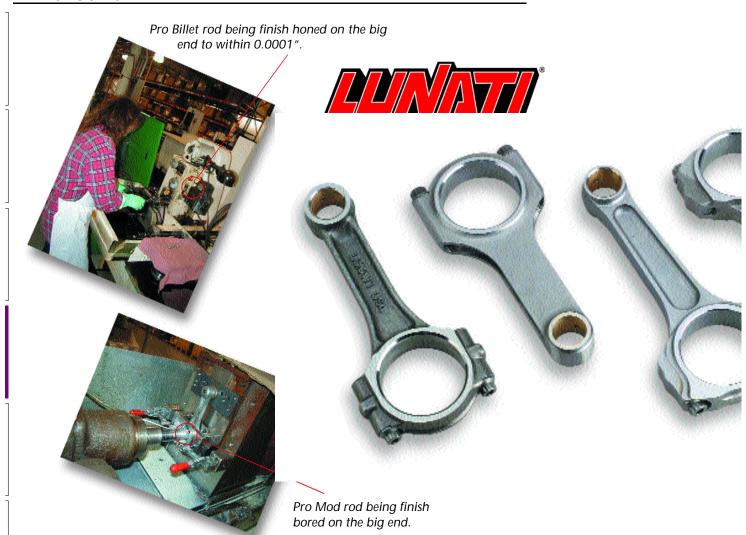
Information:

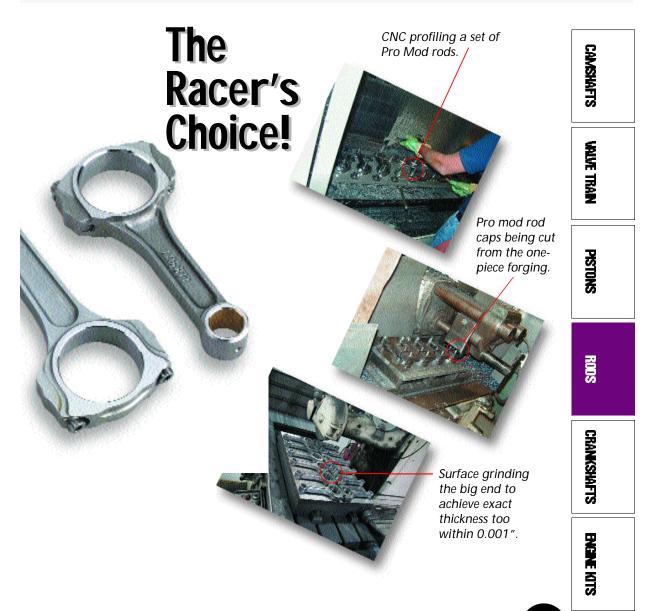

The left cylinders are numbered 1,4,5,8 with the exhaust valve pockets on the left side. The right cylinders are numbered 2,3,6,7 with the valve pockets on the right side. Chevrolet six cylinder 90 degree motors demand 4 left and 2 right pistons. Small block Ford requires all left side pockets.

Valve Pockets:

Valve pockets will be custom machined to work with your camshaft and valves. To insure that your valve pocket depth will be proper we must know how much lift at the valve your camshaft will give at nine degrees before and after top dead center when it is installed at the centerline in which it will be run. The gross lift of the camshaft has very little to do with the valve pocket depth. To ensure that the valve pocket depth will be correct we MUST have the above information AND the amount that the intake and exhaust valve is recessed or protrudes above in relation to the surface of the head plus the head gasket thickness and the amount of deck clearance that you have. In the event that you can not supply this data we will make every attempt to cut the pockets correctly based on our past experience, however we will in no way be responsible should your valve to piston clearance be incorrect.

266


www.lineffermsheffs.com


Introduction

INTRODUCTION

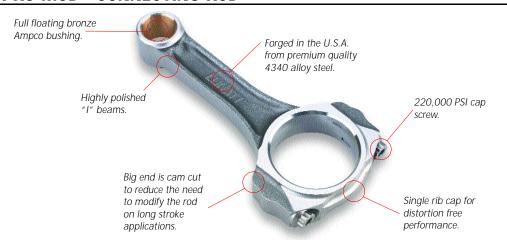
268

Connecting Rod Classifications

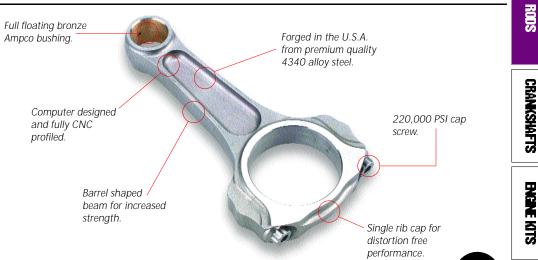
4340 FORGED STEEL "STREET RACE" CONNECTING ROD

MUDZ

4340 FORGED STEEL "SPORTSMAN" H-BEAM CONNECTING ROD



270


www.lunaliteamshafts.com

4340 FORGED STEEL "PRO MOD" CONNECTING ROD

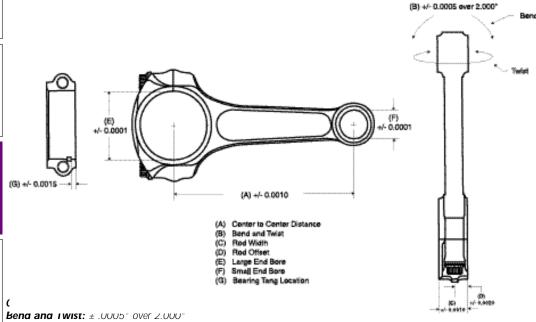
4340 STEEL BILLET "PRO BILLET" CONNECTING ROD

271

CAMSHAFTS

WALVE TRAIN

Design Unce 1:000-455-5391/Tech Unce 901:055-0550


Machining Tolerances & Rod Selection

MACHINING TOLERANCES

Connecting rods probably receive the highest stresses of any bottom end engine component. The forces the rod receives when the piston direction reverses from top dead center can exceed 12,000 lb. in a 500 C.I. Pro Stock engine. This is why Lunati rods are forged from the finest premium quality 4340 alloy steel for strength and utilize Lunati/ARP rod bolts for superior clamping forces on the rod journal.

Closer tolerances and pride in workmanship, along with strict quality control are what makes Lunati Connecting Rods the only logical choice for serious racers. We at Lunati feel the no other manufacturer will hold the close machining tolerances in manufacturing that we do.

OUR TOLERANCES SPEAK FOR THEMSELVES!

Rod Width: ± .001" Rod Offset: ± .002" Large End Bore: ± .0001" Small End Bore: ± .0001" Bearing Tang Location: ± .0015"

NOTE: Tolerances shown are for Pro Billet & Pro Mod rods

SELECTING A LUNATI CONNECTING ROD SET FOR YOUR ENGINE

Locate the connecting rod section that meets the horsepower expectations of your engine (Pro Mod, Pro Billet, etc.)

Select the engine family of your engine.

CAMSHAFTS

VALVE TRAIN

PISTONS

RODS

CRANKSHAFTS

BUCKE KITS

STREET RACE CONNECTING RODS **Chevrolet Small Block** Part Number Big End Diameter Description Weight Length LHA1 Chevy SB (B) 5.700" 2.100" .927" 580 gms 450 LHAF Chevy SB (PF) 5.700" 2.100" .927" 570 gms 450 LHD1 (6.000") Chevy SB (B) 2.100" .927" 600 gms 450

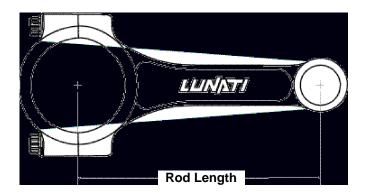
Select the desired rod lengths for each engine family, see page 8.

Still can't find what you need?

Just call Lunati's rod pros at

901-365-0950!

273


Dealer (Inc. 1/800-465-5391/Tech (Inc. 901-855-0950

Rod Length & Street Race Rod Applications

WHAT CONNECTING ROD LENGTH SHOULD I USE?

Connecting rod length is measured between the centers of the "big end" (journal end) and the "little end" (piston pin end). Below is a table with stock connecting rod lengths for various engine families.

CHEVROLET V-8 CONNECTING ROD LENGTHS

Displacen	nent	
Cubic Inches	Liters	Rod Length (inches)
202	4.9	F 700
302		5.700
305	5.0	5.700
327	5.4	5.700
350	5.7	5.700
350 (LT5)	5.7	5.700
350 (LS1)	5.7	6.098
383	6.3	6.000
400	6.6	5.565
396	6.5	6.135
402	6.6	6.135
427	7.0	6.135
454	7.4	6.135
502	8.2	6.135
377	6.2	6.135

FORD V-8 CONNECTING ROD LENGTHS

Displacement		
Cubic Inches	Liters	Rod Length (inches)
289	4.7	5.1550
302	5.0	5.0900
302 (Boss)	5.0	5.1500
302 (SVO)	5.0	5.1500
351 W ('69-'70)	5.8	5.9560
351 W ('71-'96)	5.8	5.9560
351 (SVO 9.2)	5.8	5.7800
351C (Boss)	5.8	5.7800
351M	5.8	6.5800
429 STD ('68-'70)	7.0	6.6050
429 STD ('70 1/2-'71)	7.0	6.6050
429 CJ/SCJ ('72-'73)	7.0	6.6050
429 Boss (S)	7.0	6.5490
429 Boss (T)	7.0	6.6050
460	7.5	6.6050
281 (modular)	4.6	5.9331
331 (modular)	5.4	6.6575

274

www.lunaliteamshafts.com

LUNATI CONNECTING ROD APPLICATIONS

Street Race Connecting Rods

Available in the popular Small Block Chevy 5.700" and 6.000" rod lengths and the Ford Windsor 5.400" rod length, the Street Race Rod is forged from premium 4340 alloy steel and utilizes the Lunati 187.000 psi cap screws, rather than the typical nut and bolt arrangement. This provides superior clamping force on the rod journal. The small end uses a full floating Ampco bronze bushing, however, it is also available as a press pin fit on the 5.700" rod. The entire rod surface is shot peened and stress relieved to improve overall appearance. The Street Race rod comes in weight matched sets to facilitate balancing, and has passed the 10 million cycle test for strength and durability. The Street Race Rod is suited for approximately 450 hp @ 7000 RPM in Street, Bracket and Oval Track applica tions.

CAMSHAFTS

ALVE TRAI

PISTON

RODS

CRANKSHAFTS

BUGINE KITS

Chevrolet Small Block

Part Number	Description	Length	Big End Diameter	Pin Diameter	Weight	Horsepower Rating
LHA1	Chevy SB (B)	5.700"	2.100"	.927"	580 gms	450
LHAF	Chevy SB (PF)	5.700"	2.100"	.927"	570 gms	450
LHD1	Chevy SB (B)	6.000"	2.100"	.927"	600 gms	450

Ford Small Block

Part Number	Description	Length	Big End Diameter	Pin Diameter	Weight	Horsepower Rating			
LLT1	Ford SB (B)	5.400"	2.100"	.927"	540 gms	450			
LNT1	Blower rod for Dished Piston (B)	5.400"	2.100"	.927"	535 gms	450			
IPT1	Ford SB (B)	5.400"	2.123"	.912"	540 gms	450			

NOTE: (B) Full Floating Bushed (PF) Press Fit Pin

275

Dealer (Inc. 14300-4455-5391/Tech (Inc. 901-865-0550

Sportsman H-Beam Rods

LUNATI H-BEAM CONNECTING ROD APPLICATIONS

"Sportsman"H-Beam Connecting Rod

Lunati H-Beam Sportsman connecting rods are CNC machined from aircraft quality 4340 steel. All surfaces are shot peened and stress relieved. Bronze wrist pin bushings are honed to exact pin clearance. Every rod is magnafluxed, X-rayed and ultrasonically tested to ensure the best quality.

276

LUNATI H-BEAM CONNECTING ROD APPLICATIONS

Chevrolet Small Block

Part Number	Description	Length	Big End Diameter	Pin Diameter	Weight	Horsepower Rating
LCAT	Chevy SB	5.700"	2.000"	.927"	640 gms	700
LCDI	Chevy SB	6.000"	2.000"	.927"	655 gms	700
LAAT	Chevy SB	5.700"	2.100"	.927"	635 gms	700
LADT	Chevy SB	6.000"	2.100"	.927"	650 gms	700
LAET	Chevy SB	6.125"	2.100"	.927"	660 gms	700
LAHI	Chevy SB	6.250"	2.100"	.927"	670 gms	700

Chevrolet Big Block

Part Number	Description	Length	Big End Diameter	Pin Diameter	Weight	Horsepower Rating
LBFI	Chevy BB	6.135"	2.200"	.990"	785 gms	800
LBJI	Chevy BB	6.385"	2.200"	.990"	790 gms	800
LBL T	Chevy BB	6.535"	2.200"	.990"	800 gms	800
LBPT	Chevy BB	6.800"	2.200"	.990"	820 gms	800
LBVT	Chevy BB	7.100"	2.200"	.990"	840 gms	800

Ford Small Block

Part Number	Description	Length	Big End Diameter	Pin Diameter	Weight	Horsepower Rating
LSWI	Ford SB 289-302	5.090"	2.123"	.912"	590 gms	700
LSXI	Ford SB 289-302	5.155"	2.123"	.912"	600 gms	700
LSTI	Ford SB 289-302	5.400"	2.123"	.912"	610 gms	700
LSYI	Ford SB 351W	5.956"	2.311"	.912"	640 gms	700
LSGI	Ford SB 351W	6.200"	2.311"	.912"	660 gms	700

Ford Big Block

Part Number	Description	Length	Big End Diameter	Pin Diameter	Weight	Horsepower Rating
LOZT	Ford BB 429-460	6.605"	2.500"	1.040"	820 ams	800

CAMSHAFTS

WALVE TRAIN

PISTONS

RODS

CRANKSHAFTS

277

Design (Inc. 1600-465-5591)/Tech (Inc. 901-855-050)

LUNATI PRO MOD CONNECTING ROD APPLICATIONS

Pro Mod Connecting Rod

Lunati's Pro Mod connecting rod is stronger and lighter than most other steel connect ing rods. Made from aircraft quality 4340 certified material, the Pro Mod connecting rod is the one that is most often chosen by leading engine builders, and it's approved by NHRA.

Custom profiled on state-of-the-art CNC machining centers, the big end features an all new cam cut that greatly reduces the need to modify the connecting rod in long stroke applications. The I-beams are highly polished to help "roll" oil away from the rods. Quality 7/16" Lunati 220,000 psi rod bolts are used in all rods. Connecting rod sets are weight matched to ± 1.5 grams per end. The small end is fitted with an Ampco 18 bronze bushing.

Pro Mod Rods are available in Standard and Super Duty configurations. The Standard series is good for medium to high horse-power and torque applications for street, strip, road race and oval track applications. Each Small Block rod weighs approximately 625 grams. The Super Duty series is designed for a 400 cubic inch oval track type application. Approximate weight is 670 grams.

278

LUNATI PRO MOD CONNECTING ROD APPLICATIONS

Chevrolet Small Block (Standard Series)

Part Number	Description	Length	Big End Diameter	Pin Diameter	Weight	Horsepower Rating
LAA1	Chevy SB	5.700"	2.100"	.927"	635 gms	750
LAB1	Chevy SB	5.850"	2.100"	.927"	640 gms	750
LAC1	Chevy SB	5.875"	2.100"	.927"	645 gms	750
LAD1	Chevy SB	6.000"	2.100"	.927"	650 gms	750
LAE1	Chevy SB	6.125"	2.100"	.927"	655 gms	750

Chevrolet Small Block (Super Duty Series)

Part Number	Description	Length	Big End Diameter	Pin Diameter	Weight	Horsepower Rating
LADD	Chevy SB	6.000"	2.100"	.927"	680 gms	750

Chevrolet Big Block (Standard Series)

Part Number	Description	Length	Big End Diameter	Pin Diameter	Weight	Horsepower Rating	
LBF1	Chevy BB	6.135"	2.200"	.990"	840 gms	750	
LBJ1	Chevy BB	6.385"	2.200"	.990"	850 gms	750	
LBK1	Chevy BB	6.410"	2.200"	.990"	860 gms	750	
LBL1	Chevy BB	6.535"	2.200"	.990"	860 gms	750	
LBM1	Chevy BB	6.635"	2.200"	.990"	865 gms	750	
LBN1	Chevy BB	6.660"	2.200"	.990"	870 gms	750	
LB01	Chevy BB	6.700"	2.200"	.990"	870 gms	750	

CAMSHAFTS

WALVE TRAIN

PISTONS

RODS

CRANKSHAFTS

<u>279</u>

Design (Time: 1800-465-5891 / Tech (Time: 901-855-0950

LUNATI PRO BILLET CONNECTING ROD APPLICATIONS

Pro Billet Connecting Rods

The Lunati Pro Billet Series Connecting Rod used by professional race engine builders all over the country. Exacting tolerance and precision weight matching make this rod an easy replacement for competitor's billet rods without extensive rebalancing (a typical 6.00" small block Chevy rod weighs 670 grams). Plus, the Lunati Pro Billet Rod is stronger and more durable than comparable billet steel rods on the market. The quality of the 4340E billet is undisputed, and serious racers know that demanding conditions require the very best parts available.

Lunati's Pro Billet Rod is computer designed and CNC profiled to be stronger, lighter, and more durable than all other billet rods being offered. The exclusive "barrel" shaped beam and rounded end are designed to reduce stress risers and create a smooth flow that compliments the natural grain of the billet. The big end was configured with the cam cut necessary for longer rod lengths and the increased stroke utilized in so many race engines today.

Lunati 220,000 psi 7/16" rod bolts assure proper clamping load, and on the small end, burnished Ampco bronze bushings are honed to exact pin clear ance. Closer tolerances and pride in workmanship, along with strict quality control make the Lunati Pro Billet the only logical choice for the serious racer. We feel that no other manufacturer will hold the close matching tolerances in manufacturing that we do.

Pro Billet Rods are available in Standard, Super Light and Super Duty configurations. The Standard series designed for all race applications. Approximate weight is 670 grams. Pro Billet Super Lights are intended for 355 cubic inch flat top low compression applications requiring a lighter bobweight. Approximate weight is 615 grams. Pro Billet Super Duty rods are intended for 430 cubic inch dirt, Sprint car and other NASCAR type applications. Approximate weight is 650 grams. Pro Billet Big Block rods are intended for all types of race applications.

Connecting Rod Tolerances

Center to Center Distance: ± .001"

Bend and Twist: ± .0005" over 2.000"

Rod Width: ± .001" Rod Offset: ± .002" Large End Bore: ± .0001" Small End Bore: ± .0001"

Bearing Tang Location: ± .0015"

280

www.lunalieamshafis.com

LUNATI PRO BILLET CONNECTING ROD APPLICATIONS

Chevrolet Small Block (Standard Series)

		•	•			
Part Number	Description	Length	Big End Diameter	Pin Diameter	Weight	Horsepower Rating
LAA2	Chevy SB	5.700"	2.100"	.927"	650 gms	1000
LAB2	Chevy SB	5.850"	2.100"	.927"	660 gms	1000
LAD2	Chevy SB	6.000"	2.100"	.927"	665 gms	1000
LAE2	Chevy SB	6.125"	2.100"	.927"	670 gms	1000
LAG2	Chevy SB	6.200"	2.100"	.927"	680 gms	1000
LAH2	Chevy SB	6.250"	2.100"	.927"	685 gms	1000
LA I 2	Chevy SB	6.300"	2.100"	.927"	690 gms	1000

Chevrolet Small Block (Super Light Series)

Part Number	Description	Length	Big End Diameter	Pin Diameter	Weight	Horsepower Rating
LAD9	Chevy SB	6.000"	2.100"	.927"	620 gms	1000
LAE9	Chevy SB	6.125"	2.100"	.927"	625 gms	1000
LAG9	Chevy SB	6.200"	2.100"	.927"	630 gms	1000
LAH9	Chevy SB	6.250"	2.100"	.927"	635 gms	1000

Chevrolet Small Block (Super Duty Series)

Part Number	Description	Length	Big End Diameter	Pin Diameter	Weight	Horsepower Rating	
LABE	Chevy SB	5.850"	2.100"	.927"	710 gms	1000	
LADE	Chevy SB	6.000"	2.100"	.927"	720 gms	1000	
LAEE	Chevy SB	6.125"	2.100"	.927"	725 gms	1000	

CAMSHAFTS

VALVE TRAIN

PST PS

RODS

CRANKSHAFTS

281

ILODO

Pro Billet Rods, Bolts & Lube

LUNATI PRO BILLET CONNECTING ROD APPLICATIONS

Pro Billet Connecting Rods - (continued)

GM LS1 (Super Light Series)

J	All 10 I (Capel Light Colles)										
Part			Big End	Pin		Horsepower					
Number	Description	Length	Diameter	Diameter	Weight	Rating					
LTD9	GM LS1	6.000"	2.100"	.927"	620 gms	1250					

Chevrolet Big Block (Standard Series)

	•	•	•			
Part			Big End	Pin		Horsepower
Number	Description	Length	Diameter	Diameter	Weight	Rating
LBF2	Chevy BB	6.135"	2.200"	.990"	830 gms	1250
LBJ2	Chevy BB	6.385"	2.200"	.990"	840 gms	1250
LBL2	Chevy BB	6.535"	2.200"	.990"	850 gms	1250
LB02	Chevy BB	6.700"	2.200"	.990"	860 gms	1250
LBP2	Chevy BB	6.800'	2.200"	.990"	865 gms	1250

Ford Small Block (Standard Series)

Part Number	Description	Length	Big End Diameter	Pin Diameter	Weight	Horsepower Rating
LMT2*	Ford SB	5.400"	2.100"	.927"	600 gms	1000

Ford Small Block (Super Light Series)

Part		Big End Pin	Horsepower				
Number	Description	Length	Diameter	Diameter	Weight	Rating	
LMT9*	Ford SB	5.400"	2.100"	.927"	565 gms	1000	

^{*} Must use Lunati rod bearing, P/N CR869HP

282

REPLACEMENT ROD BOLTS AND MOLY LUBE

Replacement Bolts

Lunati replacement rod bolts are rated from 180,000 psi to 220,000 psi, depending upon application. These bolts are stress relieved. **Features:** 12 point hex caps and rolled threads.

Part Number	Length	Application	
CRB150	1.400"	Billet BB, SB, Pro Mod BB	
CRB155	1.400"	Pro Mod SB	
CRB120	1.833"	Early Style BB	
CRB160	1.585"	Street Race Rod	

Lunati Rod Bolt Lube

This is not an ordinary lubricant! A specially formulated moly base, made to strict specifications, we recommend its use to consistently achieve the exact amount of fastener preloading and precise clamping forces. The friction coefficient of lubricants varies dramatically. Some are slicker than others. Tightened, dry unplated fasteners use about 85% of the applied torque simply overcoming friction between the male and female threads. So that all Lunati fasteners maintain the highest service level, we calculate and verify their preloads using superior grade moly lubricant. This lube may also be used for engine component assembly, press fitting, gear trains and general machinery.

Assembly Lubricant

Assembly Lubricant		
Part Number	Description	

CRL100 0.5 oz. packet, Moly Base Assembly Lubricant

CANSHAFTS

WALVE TRAIN

PISTONS

RODS

CRANKSHAFTS

283

Design United 1:000-455-5391/Tech Unite 901-355-0950

Connecting Rod Installation

LUNATI CONNECTING ROD INSTALLATION

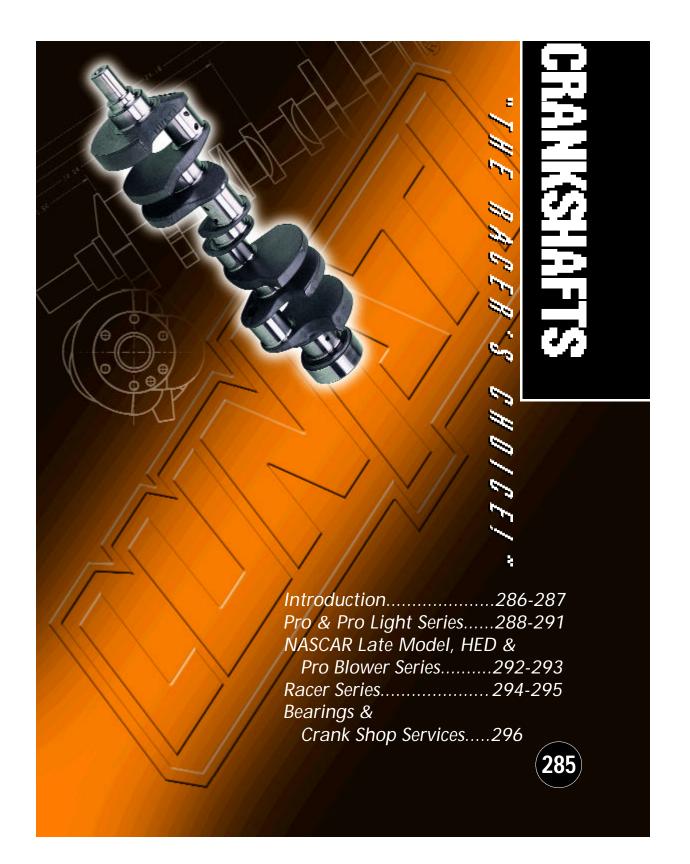
Lunati strongly recommends using the bolt-stretch method for proper rod bolt installation. Use of a bolt-stretch gauge ensures that the bolts are correctly preloaded and are providing the proper clamping load. If you do not have a stretch gauge, Lunati offers one under part # 98401.

NUUZ

Apply the molybdenum base lubricant (Part # CRL 100) under the head of the bolt and on the threads.

With the bolts installed hand tight, install the gauge and zero the dial indicator. The stretch gauge must fit into the dimples on each end of the bolt.

Alternating from one side of the rod to the other, tighten the bolts, until the bolt stretches .0050"- .0054" on Pro-Mod and Pro Billet rods and .0039"-.0043" on Street Race rods.


Lunati <u>does not</u> recommend the use of a torque wrench to install the rod bolts.

Errors due to friction, calibration, and tech-nique can lead to improper bolt stretch and can cause rod failure.

Only as a last resort, should a torque wrench be used.

DO NOT STAMP THE ROD NUMBERS ON THE RODS! ETCH THE NUMBERS. STAMPING WILL DISTORT THE ROUNDNESS!

284

Introduction

LUNATI 4340 NON TWIST STEEL FORGING

Lunati's big block and small block Chevy crankshafts are forged from the finest 4340 aircraft quality certified steel.


The 4340 alloy steel meets aircraft cleanliness and purity standards. Our exclusive non-twist design allows for continuous granular flow, producing a crankshaft with a higher cycle bending fatigue over the twisted forging version.

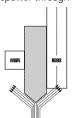
DESIGN SPECIF

The specifications during manufacturing are of the highest Lunati standards. For racing use, it is necessary that we improve on factory standards. We have done this with the material as well as the machining:

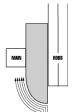
- All radii in the rod and main journals are .140".
- Roundness of each journal is within .0001" or less.
- Micro finishing of the journals are a grade 5 RMS or better.
- Crankshaft stroke is ±.001" maximum.
- A plasma gas nitrite heat treatment is used, which gives a case depth of .015"-.022".

286

www.lunaliteamshafts.com


OILING TECHNOLOGY

The oiling system is similar to GM's factory specification, how ever, we have developed more precise points where the oil enters the main and exits the rod journal. This exacting entrance and exit point improves the oil film thickness avail able at the rod journal. In addition, all oil holes have special attention given to the design for proper oil delivery.



THE LUNATI CONTOURED WING DESIGN

Lunati is proud to offer the Contoured Wing Design counter-weights on all of its Pro Series crankshafts. The design of the leading edge of the counterweight is extremely important in directing the air and oil around the counterweights. This design allows the air and oil to be directed to the main, rather than the connecting rods, therefore keeping the air and oil away from the rotating connecting rods. Air and oil move around the Contour Wing Design without losing contact with the boundary layer. If the air and oil lose contact with the boundary layer, eddy currents will form, costing valuable horsepower through windage.

Competition's knife-edge counterweight directs oil onto swinging rods

Lunati Contoured Wing Design counterweight directs oil away from swinging rods... minimizing windage = more horsepower CAMSHAFTS

WALVE TRAIN

PISTONS

RODS

CRANK SHAFTS

BOINE KITS

287

Dellar (Inc. 1:300-455-5391/Tech (Inc. 901-355-950

4340 Pro Series

LUNATI PRO SERIES

Lunati Pro Series forged crankshafts are manufactured from the highest quality 4340 certified steel. The 4340 material meets all aircraft quality standards for material cleanliness and purity standards.

DESIGN SPECIFICATIONS

- All rod journals are drilled with either a 7/8" or 3/4" lightening hole, which reduce the inertia weight of the crankshaft.
- All journal radii are ground to .140".
- The roundness of each journal is .0001" or less.
- Overall stroke is held to ±.001".
- The surface finish of the shaft is a grade 5 RMS or better.
- Each shaft is heat treated by plasma gas nitrite, creating a case depth of .015"-.022". This heat treating creates high compressive loads, which in turn gives higher cycle bending fatigue.

NOTE:

All crankshafts must use chamfered bearings! Lunati has chamfered bearings in stock to complete your engine package.

288

LUNATI PRO SERIES

SMALL BLOCK CHEVROLET V8 PRO SERIES CRANKSHAFTS

NOTE: Must use chamfered bearings!

Part Number	Stroke	Main	Pin Size	Minimum Rod Length	
AD111DN	3.000	350 (2.448	2.100	6.000	
AE111DN	3.250	350 (2.448)	2.100	6.000	
AX111DN	3.335	350 (2.448)	2.100	6.000	
AF111DN	3.480	350 (2.448)	2.100	6.000	
AG111DN	3.500	350 (2.448)	2.100	6.000	
AT111DN	3.550	350 (2.448)	2.100	6.000	
AH111DN	3.625	350 (2.448)	2.100	6.000	
AJ111DN	3.750	350 (2.448)	2.100	6.000	
AJ211DN	3.750	400 (2.648)	2.100	6.000	
AK211DN	3.800	400 (2.648)	2.100	6.000	
AM111DN	3.875	350 (2.448)	2.100	6.000	
AM211DN	3.875	400 (2.648)	2.100	6.000	
A0111DN	4.000	350 (2.448)	2.100	6.000	
A0211DN	4.000	400 (2.648)	2.100	6.000	
AU211EN	4.125	400 (2.648)	2.100	6.125	
AP211EN	4.250	400 (2.648)	2.100	6.125	

BIG BLOCK CHEVROLET V8 PRO SERIES CRANKSHAFTS (*)

NOTE: Must use chamfered bearings!

Part Number	Stroke	Main	Pin Size	Minimum Rod Length
BJ 421IN	3.750	2.750	2.200	6.385
B0421IN	4.000	2.750	2.200	6.385
BU421IN	4.125	2.750	2.200	6.385
BP421IN	4.250	2.750	2.200	6.385
BB421KN	4.375	2.750	2.200	6.535
BQ421KN	4.500	2.750	2.200	6.535
BR421MN	4.625	2.750	2.200	6.700
BS421MN	4.750	2.750	2.200	6.700
BN421MN	4.875	2.750	2.200	6.700
BV421IN	5.000	2.750	2.200	7.200
B5421 <u>I</u> N	5.300	2.750	2.200	7.200

*NOTE: These crankshafts have 8 counterweights to lower the bearing loads.

CAMSHAFTS

VALVE TRAIN

PISTONS

RODS

CRANKSHAFT!

BICHE KITS

289

Design Cine: 14300-455-5391/Tech Cine: 901-355-0550

4340 Pro & Pro Light Series

LUNATI PRO SERIES

CHEVROLET LS1 V8

Lunati pioneered the development of the 4340 forged performance crankshaft for the LS1 engine configuration. Lunati supplies Lingenfelter Performance with their LS1 crankshafts for the development of the 383 Corvette, Camaro and Firebird. Now you can enjoy that same level of performance by installing this custom crankshaft in your LS1 engine. The crankshaft comes complete with reluctor ring installed.

*NOTE: Also available 3.200" thru 4.250" strokes

FORD 302 & 351 WINDSOR

Finally, a forged 4340 crankshaft for Ford Windsor's that delivers the quality and performance needed to assure consistent, reliable laps in all types of serious competition. Available for the HO block configuration, this crankshaft is forged from 4340E non-twist alloy steel, CNC profiled, and plasma gas heat treated before being micro-polished to exact standards. Designed for use with Lunati Pro Billet Connecting Rods.

Part Number	Stroke	Main	Pin Size	Application
MEA11RN	3.250	2.250	2.100	Ford Windsor 302 HO, 5.400" rod
M6A11RN	3.300	2.250	2.100	Ford Windsor 302 HO, 5.400" rod
M4A11RN	3.425	2.250	2.100	Ford Windsor 302 HO, 5.400" rod
IGC11DN	3.500	2.750	2.100	Ford 351W, 6.000" rod
IJC11FN	3.750	2.750	2.100	Ford 351W, 6.200" rod
I8C11FN	3.900	2.750	2.100	Ford 351W, 6.200" rod
IOC11FN	4.000	2.750	2.100	Ford 351W, 6.200" rod

290

PRO LIGHT SERIES SPECIALTY CRANKSHAFTS

Lunati prides itself in manufacturing specialty crankshafts designed exclu sively for demanding applications. These crankshafts meet the stringent specifications of the Pro Series line with additional features to ensure survival in the most difficult engine environments.

CANSHAFTS

WHAT TRAIN

ROS

SMALL BLOCK CHEVROLET V8 PRO LIGHT SERIES CRANKSHAFTS

The Lunati Pro Light Series Crankshaft comes in 3.480" & 3.500" stroke. The crankshaft has lightening holes in all pin arms and through the center main journals to reduce static weight. The counterweight has been designed to reduce the moment of inertia and accelerate quickly in the 9.0:1 racing classes. The Pro Light crank shaft is designed for the professional racer and is intended to be used with our Pro Billet rods and our light weight pistons. This crankshaft typically weighs 45 pounds, depending on the bobweight.

Part Number	Stroke	Main	Pin Size	Minimum Rod Length
AF11WDN	3.480	350 (2.448)	2.100	6.000
AG11WDN	3.500	350 (2.448)	2.100	6.000

NOTE: Must use chamfered bearings!

FORD WINDSOR V8 PRO LIGHT SERIES CRANKSHAFTS NOTE: Must use chamfered bearings!

Lunati introduces a Pro Light forged 4340 crankshaft for the Ford Windsor V8 that is light in weight with Lunati durability. Available for the HO block configuration, this crankshaft is forged from 4340E non-twist alloy steel. It is CNC profiled and plasma gas heat treated before being micro-polished to exact standards. The crankshaft has lightening holes in all pin arms and through the center main journals to reduce static weight. The counterweight has been designed to reduce the moment of inertia and accelerate quickly in the 9.0:1 racing class es. The Pro Light crankshaft is designed for the professional racer and is intended to be used with the Lunati Pro Billet rods and lightweight pistons. This crankshaft typically weighs 45 pounds, depending on the bob weight.

Part Number	Stroke	Main	Pin Size	Application
IXA4WDN	3.335	2.250	2.000	Ford 351W, 6.000" rod
IYA4WDN	3.450	2.250	2.000	Ford 351W, 6.000" rod
IYC4WDN	3.450	2.750	2.000	Ford 351W, 6.000" rod
IFA4WDN	3.480	2.250	2.000	Ford 351W, 6.000" rod
IFC4WDN	3 480	2 750	2 000	Ford 351W 6 000" rod

Dellar Cine: 1:300-455-5391/Tech Cine: 901-355-095

NASCAR LMS, Pro Blower & HED Cranks

NASCAR LATE MODEL STOCK 4340 CRANKSHAFT

Manufactured from the highest quality 4340 steel. Crankshafts offered for the 350 Chevy and the Ford 351. These cranks are designed to meet all rule requirements of NASCAR. Weight is 50lbs.

Part Number	Stroke	Main	Pin Size	Application
AF117AK	3.480	2.448	2.100	Chevrolet 5.7" rod
IGC17FK	3.500	2.750	2.100	Ford 351W, 6.00" rod

PRO BLOWER SERIES

This series is designed to withstand the extreme pressures encountered when using a Roots type supercharger, commonly referred to as a blower. Lunati Blower Crankshafts have .140" radii on the rods and mains. They also have dual keyways, 3/4"-16 threads in the nose, and the flange is drilled to either 1/2" or 7/16". There are 7/8" lightening holes in the 2, 3, and 4 rod journals. The #1 rod journal is not drilled, to provide extra strength on the front of the crankshaft. Rod and main bearing must be chamfered on all Blower Series crankshafts.

BIG BLOCK CHEVROLET V8

Part Number	Stroke	Main	Pin Size	Minimum Rod Length
B0429IN	4.000	2.750	2.200	6.385
BU429IN	4.125	2.750	2.200	6.385
BP429IN	4.250	2.750	2.200	6.385

CHRYSLER LATE HEMI PRO SERIES CRANKSHAFT

The late Hemi Crankshaft is manufactured only for fuel and alcohol cars. Our same 4340 forged aircraft quality material is used. This crankshaft is available in 4.500" stroke only.

Part Number	Stroke	Main	Pin Size
EQ651*	4.500	2.750	2.374

* Call Lunati at 901-365-0950 for ordering information.

292

HARMONIC EQUALIZATION DAMPERTM (HED) CRANKSHAFT Patent # 5295411

The Harmonic Equalization Damper™ (HED) Crankshaft is designed specifically for Sprint cars and Blower applica tions. Engines that are unable to use a harmonic damper (balancer) usually have a shorter life span than engines using a damper. The reason is the fourth order harmonics are not controlled to .5° double amplitude or less. During compression and firing, the crankshaft moves torsionally clockwise and counter-clockwise. This motion is measured in degrees and is called double amplitude, because it is measuring two directions at once. To correct this condi tion, we have installed a pendulum style damper in each end of the crankshaft, producing a resonance frequency equal to two times the engine speed, counteracting the crankshaft's fourth order harmonics. Dyno and on-track testing have proven that crankshaft durability increases by reducing this particular harmonic resonance. The fourth order harmonics in an aluminum 410 cubic inch Sprint car engine was reduced from 1.0° to .5° double amplitude. This brings the fourth order into a safe operating range and prevents the crankshaft from breaking due to torsion al harmonics. During testing the first thru the sixth orders were also reduced, improving valve spring life by a magni tude of four. A typical 3.800" stroke crankshaft weights 51 pounds when used with a 1920 gram bobweight.

CANSHAFTS

WALVE TRAIN

PISTONS

RODS

CRANKSHAFTS

SMALL BLOCK CHEVROLET V8 HED CRANKSHAFTS

Part Number	Stroke	Main	Pin Size	Application
AT11H	3.550	350 (2.448)	2.100	360 Class Sprint Car
AK21H	3.800	400 (2.668)	2.100	410 Class Sprint Car

BIG BLOCK CHEVROLET V8 HED CRANKSHAFTS

Part Number	Stroke	Main	Pin Size	Application
B042H	4.000	2.750	2.200	Blower Class BBC
BU42H	4.125	2.750	2.200	Blower Class BBC
BP42H	4.250	2.750	2.200	Blower Class BBC

<u> 293</u>

Dealer Und 1:300:455:5391/Tech Und 901:355:0950

Racer & Racer Prep Series

RACER SERIES CRANKSHAFTS

SMALL BLOCK CHEVROLET V8 RACER SERIES CRANKSHAFTS

Lunati introduced the Racer Series crankshafts as an affordable alternative to the Pro Series crankshafts. The #1 and #4 rod journals are drilled to lighten and facilitate balancing. The same high standards as the Pro Series apply to this crankshaft, with the exception that there is no contour work done. The small block Chevrolet Racer

Series Crankshaft is only available in 3.480", 3.500", 3.750" and

3.875" stroke.

Part Number	Stroke	Main	Pin Size	Minimum Rod Length
AF117DN	3.480	350 (2.448)	2.100	6.000
AG117DN	3.500	350 (2.448)	2.100	6.000
AJ117DN	3.750	350 (2.448)	2.100	6.000
AJ217DN	3.750	400 (2.648)	2.100	6.000
CJ117BN (*)	3.750	350 (2.448)	2.100	5.850
CM117BN (*)	3.875	350 (2.448)	2.100	5.850

*NOTE: These crankshafts come with a one piece rear seal and fit the 1986 and newer small block V8 that was used in the Corvette, Camaro and Firebird. See photo of flange.

BIG BLOCK CHEVROLET V8 RACER SERIES CRANKSHAFTS

Part Number	Stroke	Main	Pin Size	Minimum Rod Length
B0427TN	4.000	2.750	2.200	6.385
BP427 I N	4.250	2.750	2.200	6.385

294

RACE PREP SERIES

NODULAR IRON

Lunati's Race Prep Series Crankshafts are manufactured from nodular iron. Lunati offers their Race Prep series cranks for 350 and 400 Chevys; 350 Ford Windsors and 512 Fords. All crankshafts are magnafluxed, shot peened, with some detailing to the casting, and oil holes detailed. They are then custom ground to the index and stroke using rac arcs, crankshaft is plash at treated and micro-polished.

CAMSHAFTS

WALVE TRAIN

TRAN

Part Number Stroke	Main	Pin Size	Application
A311GAN 3.493	35 (48)	2.100	Nodular Iron
AJ11GDN 3.750	350 (2.448)	2.100	Nodular Iron
AJ21GDN 3.750	400 (2.648)	2.100	Nodular Iron
M4ABFRN 3.425	2.250	2.100	Nodular Iron 302W FORD, 350 Stroker
H2B28MN 4.140	3.000	2.200	Nodular Iron 460 FORD, 512 Stroker

PISTONS

RODS

CRANKSHAFT

FORD WINDSOR 302 H.O.

The Lunati nodular iron crankshaft for Ford Windsor is designed for hot street applications and mild Bracket Race engines. The stroke on this new crank - shaft is 3.425" and is designed to fit the 1986 - 1995 H.O. engine blocks. This crankshaft is designed to be used with Lunati Street Race 5.400" connecting rods, and does require special Lunati rod bearings. Rod pins have been ground to 2.100" diameter, and must use chamfered bearings. Crankshaft is plasma heat-treated and micro-polished.

Part Number	Stroke	Main	Pin Size	Application
M4ABFRN	3.425	2.250	2.100	Ford Windsor 302HO, 5.4 Rod

295

Dellar Cine: 1:300-455-5391/Tech Cine: 901-355-0550

Main & Rod Bearings & Crank Shop Services

MAIN & ROD BEARINGS

The Alecular material used in LUNATI bearings allows a high degree of conformability over other race bearings, whether you use steel or aluminum rods. Imbedability is four times greater than other bearings, plus they will not flake. The fatigue point of Alecular material is 1100° F., while babbit overlay is only 400° F. Thickness tolerancing is held (.0001"), making LUNATI bearings an excellent choice for road racing, oval track and drag racing.

Rod and main bearings are available: -.001", -.009", -010", -011", STD, +.001",+.019", +.020", +.021" and +.030" and rod bearings are available with or without dowel pin holes. Contact a LUNATI consultant for over- or under-sized bearings.

LUNATI Alecular racing bearings are chamfered to fit LUNATI camshafts.

Part #	Description	Part #	Description
CR848HP	SBC 2.100 rod set	CR869HP	Ford 302 width, Chevy diameter
CR849HP	BBC 2.200 rod set	MB5142HP	SBC 350 main set 1/2 groove
CR850HP	SBC 2.100 rod w/ dowel hole	MB5143HP	SBC 400 main set 1/2 groove
CR851HP	SBC 2.000 rod set	MB5147HP	BBC 2.750 main set 1/2 groove
CR852HP	SBC 2.000 rod w/ dowel hole	MB5160HP	SBC 350 main set full groove
CR853HP	BBC 2.200 rod w/ dowel hole	MB5161HP	Ford 289-302 main set 1/2 groove
CR854HP	Ford 289-302 rod set	MB5162HP	Ford 289-302 main set full groove
CR855HP	Ford 289-302 rod w/ dowel hole	MB5163HP	SBC 400 main set full groove
CR867HP	SBC 2.000 pin, 2.100 rod spacer bearing	MB5164HP	BBC main set full groove

CRANK SHOP SERVICES

Part #	Description	Part #	Description
C0001	Counterweight shaping	C0180	Race prep, custom grind w/ heat treat
C0005	V-Shape leading edge of counterweight	C0190	Plasma heat treat
C0010	Rod journal lightening, per rod	C0200	Repair thrust surface
C0020	Turning counterweight OD	C0210	Total thrust restoration
C0030	Complete engine assembly balancing - internal	C0215	Offset grind stroking
C0035	Complete engine assembly balancing - external	C0220	Weld/grind per rod or main
C0040	Crank balance - no heavy metal	C0230	Vat-mag-tir-polish
C0050	Crank balance - heavy metal	C0240	Magnaflux only
C0055	Additional balance, bobweight 1575 or less	C0250	Vat and magnaflux
C0060	Each piece of heavy metal	C0260	Straighten crankshaft
C0065	Each 1/2 piece of heavy metal	C0270	Reduce journal size, per rod
C0070	Crank balance, no heavy metal, drilling	C0280	Custom stroke on Lunati crankshaft
C0080	Crank balance w/ heavy metal, no drilling	C0290	Machine shop labor
C0090	Inertia light, Pro Series only	C0295	Miscellaneous shop work
C0100	Balance inertia light, Pro Series	C0330	Machine cam gear for shim
C0110	Balance inertia light, w/ heavy metal	C0335	Shot peening
C0120	Rough balancing	C0340	Cross-drill crankshaft
C0125	Rough balance w/ heavy metal	C0345	Make BB snout on SB forging
C0130	Drill flange bolts to 1/2"	C0346	Add snout
C0140	Machine single keyway	C0350	Reduce main size over .030"
C0150	Machine dual keyways	C0355	Repair snout and remachine
C0160	Drill/tap crank nose for bolt		
C0170	Race prep, custom grind	Call for	r information or quotes on
C0175	Grind flywheel flange only		unati Crank Shon services

other Lunati Crank Shop services!

www.lunalieamshafis.com

LINGINE MILO

Bracket, Super Bracket & Stroker Engine Kits

LUNATI BRACKET ENGINE ASSEMBLIES

Chevrolet Small Block V8s

Lunati's Bracket Engine Assemblies are built from the highest quality parts. All kits include a new nodular iron crankshaft with heat treat available as an option (EA001A). Lunati Street Race" connecting rods are included in the popular 6.000" length. Hypereutectic pistons with -7 cc valve pockets, Lunati Racer Series plasma moly rings and alecular bearings are included in the package. All the kits are internally balanced.

Part Number	Crankshaft Stroke	Rod Length	Dish/ Dome	Engine Bore	CID
EA001-355	3.493"	6.000"	-7cc	4.030"	355
EA001A-355	3.493"	6.000"	-7cc	4.030" HT	355
EA001-356	3.493"	6.000"	-7cc	4.040"	356
EA001A-356	3.493"	6.000"	-7cc	4.040" HT	356
EA001-360	3.493"	6.000"	-7cc	4.060"	360
EA001A-360	3.493"	6.000"	-7cc	4.060" HT	360
EA001-383	3.750"	6.000"	-7cc	4.030"	383
EA001-384	3.750"	6.000"	-7cc	4.040"	384
EA001-388	3.750"	6.000"	-7cc	4.060"	388
EA001-404	3.750"	6.000"	-7cc	4.145"	404
EA001A-404	3.750"	6.000"	-7cc	4.145" HT	404
EA001-406	3.750"	6.000"	-7cc	4.155"	406
EA001A-406	3.750"	6.000"	-7cc	4.155" HT	406
EA001-408	3.750"	6.000"	-7cc	4.165"	408
EA001A-408	3.750"	6.000"	-7cc	4.165" HT	408
EA001-412	3.750"	6.000"	-7cc	4.185"	412
EA001A-412	3.750"	6.000"	-7cc	4.185" HT	412

LUNATI 383ci STROKER ENGINE ASSEMBLIES FOR CHEVROLET SB WITH 1 PIECE REAR MAIN SEAL

Chevrolet Small Block 350 V8s with one-piece rear main seal

Intended for late model 350 V8s, these engine assembly kits include a new nodular iron crankshaft that is machined to fit the one piece rear main seal block. 6.000" Street Race'" connecting rods are used along with Lunati 4032 forged pistons, with 20 cc dish, and Racer Series plasma rings. Alecular main and rod bearings are also used. The kits are internally balanced.

Part Number	Crankshaft Stroke	Rod Length	Dish/ Dome	Engine Bore	CID
EA011-383	3.750"	6.000"	-20cc	4.030"	383
EA011-384	3.750"	6.000"	-20cc	4.040"	384
EA011-388	3.750"	6.000"	-20cc	4.060"	388

298

LUNATI "SUPER" BRACKET ENGINE ASSEMBLIES

Chevrolet Small Block V8s

Lunati's Super Bracket Engine Assemblies are built with a new Race Prep series nodular iron crankshaft. 6.000" length Street Race'" connecting rods are specified with bushed wrist pins. Lunati forged flat top pistons, with 7 cc valve pockets, are used with Racer Series 1/16", 1/16" and 3/16" moly plasma rings. Alecular rod and main bearings are included and the complete assembly is internally balanced.

NOTE: "HT" designates crankshaft heat treat option.

"FA010-UG01" -ordering this number also upgrades to Pro Mod rods.

Dish pistons options are also available for the

"Suner" Bracket	assemblies	Contact a	Lunati Professional	at (901)365-0950

					. (,
Part Number	Crankshaft Stroke	Rod Length	Dish/ Dome	Engine Bore	CID
EA010-355	3.493"	6.000"	-7cc	4.030"	355
EA010A-355	3.493"	6.000"	-7cc	4.030" HT	355
EA010-356	3.493"	6.000"	-7cc	4.040"	356
EA010A-356	3.493"	6.000"	-7cc	4.040" HT	356
EA010-360	3.493"	6.000"	-7cc	4.060"	360
EA010A-360	3.493"	6.000"	-7cc	4.060" HT	360
EA010-383	3.750"	6.000"	-7cc	4.030"	383
EA010-384	3.750"	6.000"	-7cc	4.040"	384
EA010-388	3.750"	6.000"	-7cc	4.060"	388
EA010-404	3.750"	6.000"	-7cc	4.145"	404
EA010A-404	3.750"	6.000"	-7cc	4.145" HT	404
EA010-406	3.750"	6.000"	-7cc	4.155"	406
EA010A-406	3.750"	6.000"	-7cc	4.155" HT	406
EA010-408	3.750"	6.000"	-7cc	4.165"	408
EA010A-408	3.750"	6.000"	-7cc	4.165" HT	408
EA010-412	3.750"	6.000"	-7cc	4.185"	412
EA010A-412	3.750"	6.000"	-7cc	4.185" HT	412

APPROXIMATE COMPRESSION RATIOS FOR BRACKET KITS

Engine CID	Stroke	Head Combustion Chamber size	Cylinder Block Deck Height	Approximate Compression Ratio
355/356/360	3.493"	64cc	010"	10.0:1
355/356/360	3.493"	68cc	.000"	9.8:1
383/384/388	3.750"	76cc	010"	9.4:1
383/384/388	3.750"	72cc	010"	9.8:1
404/408/412	3.750"	76cc	010"	9.9:1
404/408/412	3.750"	72cc	010"	10.3:1
LT1/383	3.750"	55cc	.000"	10.4:1
L-98/383	3.750"	58cc	.000"	10.1:1

WALVE TRAIN

PISTONS S

RODS

CRANKSHAFTS

POWE KITS

Design (Inc. 1800-465-5391/Tech (Inc. 901-365-0950

LINGUINE VIIJ

Ford 350ci, GM LS1 Stroker & Racing Kits

FORD 350ci SMALL BLOCK STROKER ENGINE ASSEMBLY

As seen on PANTETUI

We start with a nodular iron crankshaft designed to fit the 1986 & up 302 HO. engine block. The crankshaft is race-prepped and stroked to 3.425". The connecting rods are Lunati Street Race 5.400" that have full-floating wrist pin bushings and 187,000 PSI botts. Rod and main bearings are included. Lunati forged pistons are furnished with the kit along with Lunati plasma moly rings. A variety of piston designs can be ordered to provide the desired compression ratio.

The entire assembly is externally balanced. A custom Lunati oil pump and interlocking damper are included. Call for a camshaft recommendation.

Part Number	Crankshaft Stroke	Rod Length	Dish/ Dome	Engine Bore	CID
EA31	3.425"	5.400"	-4CC	4.030"	350
EA32	3.425"	5.400"	10cc	4.030"	350
EA33	3.425"	5.400"	-25cc	4.030"	350

LUNATI VALUE + ENGINE ASSEMBLIES

412 C.I.D. of Small Block Chevrolet power Outrageous torque! Take one Chevrolet 400 C.I.D. small block V8 and

Outrageous torque! Take one Chevrolet 400 C.I.D. small block V8 and add a Lunati Value + engine package and you get 412 C.I.D. of out rageous torque! The Value + Kit offers the most popular components for a level of completion. The kit includes 4.185" bore hypereutectic pistons, Street Race'" 6.000" rods and a new cast iron 3.750" stroke crankshaft. These kits are internally balanced. The pistons are reverse dome & offer 10.6:1 compression with 72cc heads.

Part Number	Crankshaft Stroke	Rod Length	Dish/ Dome	Engine Bore	CID
EA001-412A	3.750"	6.000"	-7cc	4.185"	412

GM LS1 382ci STROKER ENGINE ASSEMBLY

The LS1 kit uses a 3.900" bore and a 4.000" stroke to achieve 382 cubic inches. Pistons are Lunati flat tops, forged from 4032 aluminum and CNC-profiled in Lunati's state-of-the-art piston turning facility. These pistons weigh 374 grams and have a 1.130" compression height. Ring lands are 1.5mm, 1.5mm and 3mm and piston-to-wall clearance is .0025". Rings are from GM.

Connecting rods are Lunati Pro Billet Super Lights made from 4340 aircraft-quality steel and measure 6.125" center-to center length.

A Lunati Pro Series non-twist forged crankshaft made of 4340 aircraft quality steel has a 4.000" stroke and weighs 45 pounds.

Part Number	Crankshaft Stroke	Rod Length	Dish/ Dome	Engine Bore	CID
EA035-382	4.000"	6.125"	-1cc	4.000"	382

300

LUNATI PROFESSIONAL RACING ENGINE ASSEMBLIES

Small Block Chevrolet V8 from 300 C.I.D. through 461 C.I.D.

Only the very best components are used such as Lunati forged pistons, Pro Series barrel-faced moly plasma 1/16",1/16" and 3/16" rings, either Pro Mod or Pro Billet connecting rods, alecular bearings and either Pro Series or Racer Series crankshafts, all internally balanced.

CAMSHAFTS

VALVE TRAIN

PSTORS

RODS

CRANKSHAFTS

Part Number	Description
EA50	Racer Series crankshaft with drilled #1 and #4 rod journals, 3.480" and 3.500" stroke. Minimum 6.000" Pro Mod connecting rods, Lunati flat top pistons, bearings and rings.
EA51	Racer Series crankshaft with drilled #1 and #4 rod journals, 3.480" and 3.500" stroke. Minimum 6.000" Pro Mod connecting rods, Lunati dome pistons, bearings and rings.
EA52	Racer Series crankshaft with drilled #1 and #4 rod journals, 3.750" stroke. Minimum 6.000" Pro Mod connecting rods, Lunati flat top pistons, bearings and rings.
EA53	Racer Series crankshaft with drilled #1 and #4 rod journals, 3.750" stroke. Minimum 6.000" Pro Mod connecting rods, Lunati dome pistons, bearings and rings.
EA54	Racer Series crankshaft with drilled #1 and #4 rod journals, 3.750" stroke. 5.700" Pro Mod connecting rods, Lunati flat top pistons, bearings and rings.
EA55	Racer Series crankshaft with drilled #1 and #4 rod journals, 3.750" stroke. 5.700" Pro Mod connecting rods, Lunati dome pistons, bearings and rings.
EA60	Pro Series crankshaft with all pin holes drilled, 3.000" -3.750" stroke. Minimum 6.000" Pro Mod connecting rods, Lunati flat top pistons, bearings and rings.
EA61	Pro Series crankshaft with all pin holes drilled,3.000" - 3.750" stroke. Minimum 6.000" Pro Mod connecting rods, Lunati dome pistons, bearings
EA62	Pro Series crankshaft with all pin holes drilled, 3.800" -4.000" stroke. Minimum 6.000" Pro Mod super duty connecting rods, Lunati flat top pistons, bearings and rings.
EA63	Pro Series crankshaft with all pin holes drilled,3.800" - 4.000" stroke. Minimum 6.000" Pro Mod super duty connecting rods, Lunati dome pistons, bearings and rings.
EA64	Pro Series crankshaft with all pin holes drilled, 3.000" - 3.750" stroke. Minimum 6.000" Lunati billet connecting rods, Lunati flat top pistons, bearings and rings.
EA65	Pro Series crankshaft with all pin holes drilled, 3.000" - 3.750" stroke. Minimum 6.000" Lunati billet connecting rods, Lunati dome pistons, bearings and rings.
EA66	Pro Series crankshaft with all pin holes drilled, 3.800" - 4.000" stroke. Minimum 6.000" Lunati billet connecting rods, flat top pistons, bearings and rings
EA67	Pro Series crankshaft with all pin holes drilled, 3.800" - 4.000" stroke. Minimum 6.000" Lunati billet connecting rods, dome pistons, bearings and rings.
EA68	Pro Series crankshaft with all pin holes drilled, 4.125" - 4.250" stroke. Minimum 6.000" Lunati billet connecting rods. Lunati flat top or dome pistons, bearings and rings.

201

Dealer (Inc. 14800-4455-5391/Tech (Inc. 901-865-0950

LINUIIVE MITO

Racing Engine Kits & Oil Pumps

LUNATI PROFESSIONAL RACING ENGINE ASSEMBLIES

Big Block Chevrolet V8s from 396 C.I.D. through 707 C.I.D.

Only the very best components are used such as Lunati forged pistons, Pro Series barrel-faced moly plasma 1/16", 1/16" and 3/16" rings, either Pro Mod or Pro Billet connecting rods, bearings and either Pro Series or Racer Series crankshafts, all internally balanced.

Part Number	Description
EA80	Racer Series crankshaft with drilled #1 and #4 pin holes, 4.000" - 4.250" stroke. Minimum 6.385" Pro Mod connecting rods, Lunati flat top pistons, bearings and rings.
EA82	Racer Series crankshaft with drilled #1 and #4 pin holes, 4.000" - 4.250" stroke. Minimum 6.385" Pro Mod connecting rods, Lunati domed pistons, bearings and rings.
EA90	Pro Series crankshaft with all pin holes drilled, 3.750"-4.375" stroke. Minimum 6.385" Pro Mod connecting rods, Lunati flat top pistons, bearings and rings.
EA92	Pro Series crankshaft with all pin holes drilled, 3.750"-4.375" stroke. Minimum 6.385" Pro Mod connecting rods, Lunati domed pistons, bearings and rings.
EA94	Pro Series crankshaft with all pin holes drilled, 3.750"-4.375" stroke. Minimum 6.385" Lunati billet connecting rods, flat top pistons, bearings and rings.
EA96	Pro Series crankshaft with all pin holes drilled, 3.750"-4.375" stroke. Minimum 6.385" Lunati billet connecting rods, domed pistons, bearings and rings.
EA100	Pro Series crankshaft with all pin holes drilled, 4.500" - 4.750" stroke. Minimum 6.535" Pro Mod connecting rods, Lunati flat top pistons, bearings and rings. Shorter length rods may require an extra charge for balancing.
EA102	Pro Series crankshaft with all pin holes drilled, 4.500" - 4.750" stroke. Minimum 6.535" Pro Mod connecting rods, Lunati domed pistons, bearings and rings. Shorter length rods may require an extra charge for balancing.
EA104	Pro Series crankshaft with all pin holes drilled, 4.500" - 4.750" stroke. Minimum 6.535" Lunati billet connecting rods, flat top pistons, bearings and rings. Shorter length rods may require an extra charge for balancing.
EA106	Pro Series crankshaft with all pin holes drilled, 4.500" - 4.750" stroke. Minimum 6.535" Lunati billet connecting rods, Lunati domed pistons, bear-ings and rings. Shorter length rods may require an extra charge for balancing.
EA120	Pro Series crankshaft with all pin holes drilled, 4.850" - 5.300" stroke. Minimum 7.200" Lunati billet connecting rods, Lunati flat top or domed pistons,

302

STREET PERFORMANCE OIL PUMP

Lunati street performance replacement oil pumps are designed for the street enthusiast in mind. Each pump features a cast iron base plate rather than the stamped steel unit which tends to warp and wear after prolonged use.

- street applications
- standard volume
- · cast iron base plate

Part Number	Description
94117	Chevrolet 283-400 (standard volume)
94077	Chevrolet 396-454 (standard volume)
94100	Chevrolet 283-400 (standard volume, high pressure; requires 94105 and 94106)
94084A	Ford 351 Cleveland-400 1970-82 (standard volume)
94084D	Ford 429-460 1968-78 (standard volume)
94084B	Ford 429-460 Cobra Jet 1968-78 (standard volume)

STREET / STRIP OIL PUMP

A Lunati high-volume oil pump is perfect for your street/strip engine

- street/strip applications
- high volumecast iron base plate

Part Number	Description
94084E	Ford 429-460 Cobra Jet 1968-78 (high volume)
94020	Buick V-6 & V-8 196-350 (high volume)
94099	Chevrolet 283-400 (high volume)
94104	Chevrolet 396-454

BLUE PRINTED RACING OIL PUMP

If you are building a potent street/racing engine, then this is the pump for you. These pumps are designed for maximum oiling up to 6,500 RPM.

- street/strip applications
- high volume
- cast iron base plate
- intake port oversized 20% for less suction loss
- performance coated materials
- reamed passages
- easily adjustable spring rates
 fully pressed drive shaft; drilled and pinned to eliminate slippage
 Chevrolet applications feature "Hex Drive" intermediate shafts

Part Number	Description
94101	Chevrolet 283-400 (requires 94105)
94113	Ford 302-351W Special Stroker Kit Pump w/shaft
<u> Deslar (11)</u>	#1800455591/Terh Une 901855-0950

CAMSHAFTS

WHITE TRAIN

ROS

CRANKSHAFTS

POWE KITS

LINUIIVE MII 3

Oil Pump, Pickup Screens & Replacement Shafts

BLUE PRINTED RACING OIL PUMP - ANTI CAVATATION

The Lunati blue printed racing pumps feature all the benefits of the "Blue Printed Street/Strip Performance" pumps, with the addition of "anti-cavitation" slots. Why reducing idle pressure slightly, the anti-cavitation slots force oil to the rotor base and reduce spark scatter in applications higher than 6,500 RPM-perfect for race engines!

- racing applications
- high volume
- cast iron base plate
- intake port oversized 20% for less suction loss
- performance coated materials
- reamed passages
- easily adjustable spring rates
- fully pressed drive shaft; drilled and pinned to eliminate slippage
- · Chevrolet applications feature "Hex Drive" intermediate shafts
- · anti-cavitation slots for high RPM performance

Part Number	Description
94102	Chevrolet 283-400 (requires 94107)
94103	Chevrolet 396-454 (requires 94108)

PICKUP SCREENS AND REPLACEMENT SHAFTS

Part Number	Description
94115	302W pickup tube 1990-93
94116	302W pickup tube 1981-90
94105	Oversize pickup screen
94107	Oversize pickup screen
94108	Oversize pickup screen
94106	Oil pump shaft for 94100
94109	Replacement oil pump shaft for 94102
94110	Replacement oil pump shaft for 94103

304